
ay 1967 Repor t  202 

SYNTHESIS AND IDENTIFICATION OF MATHE-MATICAL MODELS 

FOR THE DISCRETE CONTROL BEHAVIOR OF HUMAN OPERATORS 

M. J. Mer r i t t  



USCEE Repor t  202 

T e c hnic a1 R epo rt 

SYNTHESIS AND IDENTIFICATION O F  MATHEMATICAL MODELS 

FOR THE DISCRETE CONTROL BEHAVIOR OF HUMAN OPERATORS 

M. J. M e r r i t t  

ELECTRICAL ENGINEERING DEPARTMENT 
UNIVERSITY O F  SOUTHERN CALIFORNIA 

LOS ANGELES, CALIFORNIA 

May 1967 

This  research was  sponsored by the National Aeronautics and Space 
Administrat ion under Grant  No. NGR 05-018-022 of the Office of 
Advanced R e s e a r c h  and Technology. 



ABSTRACT 

This repor t  desc r ibes  the synthesis and identification of mathematical  

models which charac te r ize  the d i sc re te  control  behavior of human operators.  

This type of behavior occurs  i n  control situations where  the human operator  must  

decide between a smal l  number of al ternatives,  while generating continuous control 

actions at  the same  time. 

however, systematic techniques for  the i r  synthesis  and identification have been 

lacking. 

made possible by the introduction of two new elements which can be used to con- 

figure complete human operator  models. 

Models of this  type have been proposed previously, 

In this repor t  a systematic t rea tment  of d i s c r e t e  control actions is 

Two types of hybrid elements a r e  presented.  One accepts continuous inputs 

and produces binary outputs, while the other has continuous inputs and produces 

continuous outputs under the control of binary signals, 

action, throw a switch, o r  se lect  which switch out of a group of switches should 

be operated a r e  descr ibed by a Multi-State Decision Element (MSDE). 

concerning the magnitude of a d i sc re te  control action, the length of a control in terval ,  

etc. a r e  modeled by a Proport ional  Decision Element (PDE), 

Decisions to initiate an  

Decisions 

Procedures  and digital  computer p rograms  for  the complete identification 

of both types of elements a r e  given. 

The Multi-State Decision Element and the Proport ional  Decision Element 

a r e  applied to  the modeling of human operators  performing compensatory tracking 

of gaussian random inputs. The basic  contlsol 

t ask  was the  same  i n  both cases .  

axis of an a i r c ra f t  and was selected in  such a manner  that  pulsatile control 

Two experiments  were  performed. 

The controlled element resembled the pitch 



actions were  generated by the  operators .  

In the first experiment,  the operator  viewed a single compensatory osci l-  

loscope display, which presented altitude e r r o r .  A Multi-State Decision Element 

was used to  model the opera tors  decision to  ini t iate a pulsatile control event. 

A Proportional Decision Element was used to  model the opera tors  decision as 

to  the amplitude and width of the  pulse event. 

identified and resulted i n  an asynchronous input dependent sampled data model 

of the human opera tor ' s  control actions. 

The elements were  completely 

The second experiment was an extension of the f i r s t ,  i n  which the r e sem-  

blance to an a i rc ra f t  s t ick axis  was enhanced by adding an attitude display p re-  

senting pitch angle. 

motions and eye motions between the widely separated attitude and e r r o r  displays. 

A complete human operator  model, describing both stick motion and eye motion 

was constructed using the  two decision elements. The resultant model contains 

a determinist ic  input dependent decision element modeling the opera tors  eye motions. 

The opera tors  control behavior consisted of pulsatile stick 
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CHAPTER I 

INTRODUCTION AND BACKGROUND 

Human Controllec 
+ Operator ' Element  

1. 1 - General  Statement of The Problem 

! 

This  repor t  is concerned w-ith the mathematical  represen ta-  

i 

tion of a par t icular  class of input-output behavior exhibited by human 

- 

opera tors  in a control  system. 

s een  in F igure  1. 1. 

A block d iagram of such a sys t em is 

E r r o r  Opera tor ' s  Sys tern 

input I 

-I 

If the display device presen ts  both the input, r(t), and the 

sys t em output, c(t),  to  the operator ,  then the opera tor ' s  task is 

known as pursuit  tracking. If the operator observes  the difference 

between these signals,  e(t),  then the operator  per forms  compensa-  

tory tracking. In compensatory tracking the operator  a t tempts  to  

1 
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The mathematical  models  m o s t  reduce the e r r o r  s ignal  to zero. 

commonly used to represen t  the human opera tor  in a sys tem such as 

F igure  1. 1 are  continuous describing functions, synthesized by linear, 

constant coefficient different ial  equations and t ime delay. 

Continuous describing function models  a r e  suitable for  a 

wide c lass  of t racking situations. How-ever, they a r e  not w-ell sui ted 

to the descript ion of an  important  c l a s s  of control reponses,  defined 

as “discre te  control  behavior. I ’  Discre te  control  actions a r e  

responses  w-hich are composed of a limited s e t  of pat terns,  such as 

those show-n in  F igure  1. 2. The a i rc ra f t  throttle position of Figure  

1.2(a)  may  be synthesized f r o m  tw-o types of pat terns:  (a) r a m p s  of 

slope k and duration t 

p: and duration t_.  

and ( b )  constant positon regions, of amplitude 
r 

Each of the above pat terns is characterized by a 
J. L 

pai r  of numbers. In general ,  each pat tern 

d i sc re te  control action is character ized  by 

of a se t  comprising a 

an n-tuple of numbers. 

Two additional examples a r e  given in Figure  1.2(b)  and (c).  

Disc re te  control actions of opera tors  a r e  not l imited to 

manual  manipulation of a control device, but include, for  example, 

visual  scanning between separa ted  display devices, and mental  

decisions w-hich affect the process  by w-hich the control actions a r e  

generated. Discre te  control  processes  may  occur simultaneously 
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(A) 

Air c raf t  
T h r  ot t le 
Posit ion 

T I 
ct c3 

3 
f 4 T ime  

(C 1 
Position 

Of 
C ontr ol  

Device 

F igure  1 . 2  Examples of Disc re te  Human 
Operator Control Actions 
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with continuous control  actions, o r  they may movide  supervisory  

monitoring and modification of a continuous control action. 

The major  objective of this r epor t  is to nresent  an analytical 

and exDerimenta1 study of a new c l a s s  of mathematical  models  for  

the d i sc re te  control behavior of human operators .  These  models  are 

synthesized by two genera l  purpose decision elements and their 

associated identification algori thms,  

control  behavior have been presented previously, this r e s e a r c h  is the 

While cer ta in  types of d i sc re te  

f i r s t  to n resen t  genera l  nurpose elements which can be combined to 

model  d i sc re te  control behavior, Complete identification nrocedures  

for  the two elements a r e  described.  The Durpose of this introductory 

chapter is to give a brief description of the background for  the inves-  

tigation, outline i t s  ma jor  objectives, descr ibe  the limitations of the 

r e s e a r c h  n rogram and present  in detail  the organization of the body 

. of the repor t .  

1 . 2  Background 

The develomnent of mathematical  models  for  human onera to r s  

began late  in World W a r  I1 when human t r a c k e r s  were  w-idely used i n  

t a rge t  t racking for  ant i- a i rcraf t  guns and similar devices. 

first engineering approaches to the problem were  reported by 

Tust in [ 5 q  in England and Ragazzini L 54 in  the United States.  

The 

1 
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Both investigators utilized l inear describing functions, thus allow-ing 

l inear  control  sys t em techniques to  be aDplied to the analysis and 

synthesis  of man-machine sys tems .  

1, 2. 1 Linear Describing Function Models 

A l inear  describing function model consis ts  of a constant 

coefficient differential equation and a time delay, selected such that 

the mean  squared  difference between the model  output and the opera- 

to r  output is minimized, w-hen both are  forced w-ith the same input. 

Most describing function models in  the l i t e ra tu re  are  obtained by 

using signals composed of s u m s  of sinusoids w-hich are  approximately 

gaussian and random appearing. The parameters  d describing function 

models are  usually obtained by spec t ra l  analysis  techniques. 

Describing functions of the type j u s t  descr ibed w-ere obtained 

by McRuer,  Krendel, Graham, et a1 p1-g fo r  single axis compensa-  

tory tracking tasks.  By systematically studying a variety of 

controlled e lements ,  input bandwidths, control lers  and displays, a 

general  purpose describing function model  w-as obtained. 

a set  of ru les  w-ere formulated to  allow the model  pa rame te r s  to be 

se lected according to  the t ransfer  function of the plant, bandwidth of 

In addition, 

the input signal  and type of controller  used. 

models  for  multi- axis tracking tasks  are  given by Bekey, et a t  r411 

and McRuer and Graham [241. 

Describing function 
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Multiple l inear  r egress ion  techniques w-ere utilized by 

Wierwille r451 to identify describing function models ,  while Bekey 

and Meissinger [ 261 utilized gradient s e a r c h  pa ramete r  identification. 

1. 2.2 Intermit tent  Models 

In appendix I of his  dissertat ion,  Bekey r 3 ]  presents  sub-  

stant ial  evidence for  the existence of intermit tent  behavior in human 

opera tors .  The physiology of the visual, c e r e b r a l  and neuro-  

muscular  s y s t e m s  supports  the hypothesis that human opera to r s  

util ize inputs intermittently. 

t r u m  of the difference between the output of a l inear  describing 

It  has  been sa id  that the pow-er spec-  

function model  and the output of an  intermit tent  operator  w-ould con- 

tain easi ly recognized peaks. These  peaks would be the resu l t  of 

periodici t ies  caused by the sampling behavior of the operator .  A 

careful  study of the power spec t rum of this difference by McRuer 

C25-j revealed no significant periodicities.  Following this,  Biddle, 

e t  a1 [ 5 7 ]  found that random perturbations of the periodic sampling 

interval  caused the peaks in the Dower spect rum due to sampling to 

disaDpear. 

Sampling human operator  models offer many advantages over 

These  advantages are offset by the lack of su i t-  continuous models.  

able identification techniques, 

a human operator  is synthesized in Chapter 5 below-. 

An input dependent sampling model  of 

The 
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identification of the input dependent sampling behavior w-as Dossible 

only because the ope ra to r ' s  output consisted of pulsatile control  

motions. 

put human operator  models remains  to be c a r r i e d  out. 

The application of the d i s c r e t e  e lements  to continuous out- 

1. 3 Discrete  Control  Behavior In Human Opera tors  

Three  examples of d i s c r e t e  control  behavior w e r e  given in 

F igure  1.2.  Numerous examples of d i s c r e t e  control  behavior in 

human opera tors  are available in the l i t e ra tu re .  

models  for  this  type of behavior m a y  be i l lus t ra ted by considering 

tw-o examples in detail. 

The ro l e  played b y  

Chalk r 6 3 recorded  the control  actions of pilots performing 

A typical ins t rument  landings in a variable stability T-33  a i rc ra f t ,  

t ime his tory of elevator deflection, a i leron deflection, rudder  de  - 

flection and thrott le oosition is s een  in F igure  1. 3. 

ins t rument  panel is shown in F igure  1.4. 

des i red  landing maneuver sat isfactori ly,  the pilot m u s t  scan betw-een 

a number of separa ted  ins t ruments ,  

humar, operator  behavior. 

appears to be continuous, w-hile the a i leron and rudder  deflection 

time his tor ies  are quite pulsatile. 

A typ ica la i rc ra f t  

In o r d e r  to  pe r fo rm the 

This is cer ta inly  d i s c r e t e  

The elevator deflection t ime his tory 

The thrott le position is 
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In  A T- 33  Aircraf t  (Chalk, 1966) 
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FIGURE 1.4 - -  AN AIliCRAFT INSTRUMENT PANEL 
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incremented o r  decremented at i r regu la r  in tervals .  

control  actions may  be descr ibed as d i sc re te  control  actions, 

The l a s t  th ree  

A human operator  model  which is to ref lect  both the continuous 

elevator control and the d i sc re te  control  of the ai leron,  rudder ,  

thrott le ,  and visual scanning mechanism would be complicated indeed. 

In the face of this complexity and lacking sys temat ic  techniques for 

the synthesis and identification of d i sc re te  models ,  two courses  of 

action have been followed. 

behavior and assumed all of the inputs w-ere utilized continuously, o r  

neglected all but one input entirely.  Other investigators,  notably 

Senders Wq, concentrated on the visual  scanning behavior of opera-  

t o r s ,  neglecting entirely any input-output behavior. In both ca se s  

sa t is factory  models for  behavior of Dilots performing ins t rument  

maneuvers  were  obtained. The models were ,  however, l imited to 

represent ing only Dart of the opera to r ' s  control  actions. 

Some investigators neglected the scanning 

A s  another example, consider the t ask  of driving an automo- 

bile dow-n a w-inding road. 

p resen t  input (the portion of road immediately ahead of the c a r )  but a 

substantial  D a r t  of the future inDut (the road ahead of the ca r ) .  The 

availability of Preview- information about the input signal  makes  this 

a m o r e  complex task to  model  than a standard tracking task. 

The dr iver  has  available not only the 

An 
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investigation was conducted by Wierwille [47] in  o rde r  to obtain 

information about the way human opera to r s  control  an  automobile 

at high speed. 

found in  F igure  1 .  5. 

t i le  and may  be c lassed  as d i sc re te  control behavior. 

selected by Wierw-i l le ,  as best suited to the objectives of h i s  study, 

was a l inear  describing function. 

A typical t ime his tory  of s teer ing  wheel Position is 

The s teer ing  wheel nosition is strongly pulsa-  

The model  

The outDut of his  model  is a lso  

seen  in F igure  1. 5. The model  c lear€y ref lec ts  the basic control 

actions of the onera tor ,  but does not produce pulsatile control  

act ions 

In the examnles above, the d i sc re te  control behavior has  been 

neglected because, in par t ,  generalized techniques for the synthesis  

and identification of d i sc re te  human onerator  models  w-ere not avai l -  

able,  A number of investigations, in which d iscre te  behavior was 

modeled, will be discussed in  detai l  in the next chanter ,  

case ,  the model  develoned w-as annlicable only to the nart icular  

exDerimenta1 situation. 

In each 

1 .  4 Objectives Of The Study 

The major  objective of this study is the development of 

sys temat ic  techniques for  the synthesis  and identification of mathe  - 

matica l  models  for  d i sc re te  human oPerator behavior. This 
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FIGURE 1.5 - Time  Histories  of High Speed Automobile 

Driving (Wierwille, et al, 1966) 
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objective can be res ta ted  in terms of m o r e  specific goals as 

follows: 

Examine the l i t e ra tu re  on human onerator 

modeling and isolate the types of d i sc re te  

control behavior observed. 

Analyze the resu l t s  of pa r t  (a) and determine 

specifications for general  s t ruc ture  discre te  

model  elements.  

Formulate  mathematical  descript ions of the 

d i sc re te  model  elements,  

Develop identification procedures  for the 

d i sc re te  elements 

P e r f o r m  experimental  studies to evaluate the 

effectiveness and utility of the d i sc re te  e lements ,  

On the bas is  of the experimental  s tudies,  

Dropose extensions of the study. 

The study oroceeds  f r o m  background to analytical investigation, and 

finally to exper imenta l  verification. 

1. 5 Limitations Of The Study 

A number of res t r i c t ions  apply to the broad abjectives stated 

above. The res t r i c t ions  fall into two categories:  those affecting the 

exner iments  and those affecting the mathematical  models. 

J 
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1. 5, 1 Restr ict ions On The Experiments 

The experiments descr ibed below- we re  limited to  com.oensa- 

to ry  tracking of single axis sys tems .  Fu r the r ,  the dynamics of the 

controlled elements elicited pulsatile control  actions f r o m  the ooera -  

to r s .  

The experiments w-ere based on resu l t s  obtained f rom two 

subjects .  

not on the two decision elements nresented.  

exDeriments is to  demonstra te  the applicability of the decision 

e lements  to the modeling of d i sc re te  human ogerator  behavior. 

models  obtained f r o m  the experiments a r e  representa t ive  of one, 

well t ra ined onerator  and much work remains  to establish the 

significance of the numerical  resu l t s ,  

These res t r i c t ions  ref lect  on the experimental  resu l t s  and 

The intention of the 

The 

1, 5. 2 Rest r ic t ions  Of The Mathematical  Models 

The decision elements represented below a r e  not p r imar i ly  

suited to the reDresentation of continuous human onerator behavior. 

Examples are taken f rom the l i t e ra tu re  in which d i sc re te  

control  actions effect the charac te r i s t i cs  of an  opera to r ' s  continuous 

control  behavior. 

e lements  is described,  but no at tempts a r e  made  to synthesize com-  

plete human oDerator models.  

The modeling of such behavior by d i sc re te  decision 

i 
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1. 6 Organization Of The Dissertat ion 

The d isser ta t ion  is organized into seven chapters ,  The 

p resen t  chapter has  indicated the major  objectives of the study, the 

res t r i c t ions  nlaced on these objectives, and presented the background 

which motivated the study. 

Chapter 2 considers  the o resen t  s ta tus  of d iscre te  human 

opera tor  models ,  

which ref lec t  the d i sc re te  control behavior of human ooera tors  are 

mesen ted .  Based on these, two decision elements,  the Propor t ional  

Decision Element (PDE) and the Multi-State Decision Element 

(MSDE ) a r e  developed. 

i n  detai l  and the application of the decision elements to the synthesis  

of models  is described,  

Requirements and des i rable  fea tures  of e lements  

Examples f rom the l i t e ra tu re  a r e  considered 

Chapter 3 formal izes  the verbal ,  block diagram descript ions 

of the PDE and MSDE developed in  Chapter 2, by defining the input- 

output relat ionships mathematically. 

Chapter 4 p resen t s  identification algori thms for  the PDE and 

the MSDE. 

pose digital computers  and hybrid computers .  

The algori thms a r e  easi ly mechanized on genera l  pur-  

Chapter 5 desc r ibes  the complete synthesis  and identification 

of a model  for a human oDerator performing compensatory single 
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axis tracking of gaussian random signals.  

such that the opera tor  e lec ts  to generate oulsat i le  control  actions. 

The controlled element is 

The resul tant  model  contains an input monitoring decision element 

which controls  samole  and holds. The resu l t  is an  input dependent 

sampling model  for  a human onera tor .  

Chapter 6 is an extension of the work of Chapter 5, The con- 

trol led element of Chapter 5 resembled an a i r c r a f t  pitch axis. The 

input to the controlled element was elevator vosition and the output 

w-as altitude. 

simulating an atti tude display, 

A second disnlay was added presenting pitch angle, 

The geometry of the t a sk  was 

se lec ted  to s imulate a t e r r a i n  avoidance w o b l e m .  The controlled 

elements w-ere such that the operator  again elected to  produce 

pulsatile control  actions. 

synthesized and identified. 

A complete human opera tor  model  w-as 

The model  contains a determinis t ic  

visual  scanning and signal  processing sys tem in  addition to the pulse 

generation system. 

Chapter 7 summar izes  the resu l t s  of the  study and p resen t s  

recommendations for  future work. 

1. 7 Applications Of The Dissertat ion 

There  are an increasing number of investigations descr ibed 

in the l i t e ra tu re  on human operator  modeling which delve into the 
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detailed s t ruc tu re  of human operators .  Models a r e  being studied 

which probe into the opera to r ' s  ability to recognize plant changes 

and adapt to them. 

tribution to the scientific goal of furthering the understanding of 

human operator  behavior by providing tools for the analysis of d i s -  

It is hoped that this dissertat ion will be a con- 

c r e t e  human opera tor  behavior. Fur the r ,  this study is an example 

of a methodology for  the development of mathematical  models which 

may  find increasing usefulness in the future. 



CHAPTER 2 

AN ANALYSIS AND REVIEW O F  DISCRETE CONTROL 

BEHAVIOR IN HUMAN OPERATORS 

2. 1 Classes  Of Disc re te  Control  Behavior 

The synthesis  of mathemat ical  models of human opera to rs  in  

closed loop control sys tems  is based on the assumption that a causa l  

relat ionship exis ts  between the sensory  s t imul i  available to  the 

operator  and the control  actions which r e su l t  f r om muscle  f lexures.  

The sensory stimuli are usually continuous functions of time. Some 

examples of d i sc re te  control actions were  presented in the preceding 

chapter .  These  were  pulsatile and incremental  control actions and 

visual  scanning betw-een separa te  displays. A review of the l i t e r a-  

t u r e  on human operator  modeling reveals  th ree  c l a s se s  of d i sc re te  

behavior in human operators :  

1. 

2. 

3 .  Detection and switching. 

Visual scanning betw-een separated display devices. 

Pulsa t i le  or incremental  control actions. 

The ability of human opera to rs  to  adapt to sudden changes in 

a lmos t  any portion of the control  sys tem is well  known. The 

18 
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adaptation to these sudden changes in environment requ i res  the opera-  

tor  to detect  the change and modify his  control  s t ra tegy accordingly. 

2 . 2  Requirements F o r  Models Of Discre te  Control  Behavior - 

F r o m  the descr ipt ions  given above, i t  is not c lea r  what the 

output of a d i sc re te  control  element should be. 

scanning the model  mus t  indicate w-hich of the available displays is to 

be viewed and for how long. 

next display to  be viewed and produce an output when i t  is t ime to 

view- another display. 

possible al ternative decisions. 

generates  N binary signals on separa te  output lines, corresponding to 

In the case  of visual  

Alternatively the model  can point to the 

In both ca se s ,  the model  mus t  se lect  betw-een 

This may be achieved if  the model 

N possible al ternative decisions. 

se lected a t  a t ime,  only one output a t  a time can be true. 

s ions a r e  considered to be d i sc re te  operator s ta tes  then this may be 

descr ibed a s  a mul t i- s ta te  decision. The inputs to the decision 

model  are continuous functions of t ime and the output is a se t  of 

binary signals,  only one of which can be t r ue  a t  a time. 

s ta te  decision p rocess  a l so  occurs  in the other c lasses  of d i sc re te  

control  behavior. In generating a pulsatile o r  incremental  control 

action the operator mus t  decide w-hen to start the control action and 

what polarity to make it. The detection of a sudden plant change is 

Since only one al ternative can be 

If the deci-  

A multi-  
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similarly a mult i- s tate  decision. In  the multiple display case ,  the re  

a r e  many possible al ternat ive s ta tes .  In the l a s t  two c a s e s ,  only 

two output s t a t e s  are required,  

actions the operator  m u s t  se lec t  a pulse amplitude and a pulse width. 

This  may be viewed a s  a mul t i - s ta te  decision in w-hich the s ta tes  

In the c a s e  of pulsatile control 

r ep resen t  quantized pulse amplitudes or  w-idths. If the human opera-  

tor  is provided w-ith a continuous control device, the the number of 

quantization s t a t e s  required to adequately descr ibe  the outptt may 

become quite large.  A m o r e  convenient approach is to consider the 

output of the decision model to be a number,  the magnitude of w-hich 

determines the amplitude o r  width of the control action. 

that some functional relationship exis ts  betw-een the displayed signals 

and the pulse amplitude, for example. 

Assume 

This  may be modeled by 

sampling and holding the t ransient  signals and then computing the 

pulse amplitude f rom the known functional relationship. This r e -  

qu i res  a control s ignal  to operate  the sample  and hold device. The 

control signal is a binary, on-off signal and may be obtained f r o m  

a mult i- state  process .  

Thus far, two types of decision p rocesses  have been isolated. 

These  are the mult i- state  decision and the function generation deci-  

sion. 

quantity and not a continuous function of the inputs. 

The la t te r  is called a decision a s  the output is a d i sc re te  
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2. 3 Elements  F o r  Disc re te  Control Models 

Tw-o genera l  purpose elements can be constructed f rom these 

ve rba l  descriptions. 

2. 3. 1 Multi-State Decisions 

Multi  State  decisions can be generated by adapting pat tern 

recognition techniques r131. A number of hypersurfaces a r e  gene- 

ra ted  in the space  formed by the l inear  combinations of the input 

signals.  

taneous input vector  re la t ive  to the hypersurfaces.  

function of the outputs of the threhold elements determines which of 

the output l ines is to be t rue.  

Element (here in  af ter  denoted by MSDE). 

A threshold element de termines  the position of the instan-  

A boolean 

The resul t  is a Multi-State Decision 

2. 3.2 Function Generation Decisions 

The function generation decision p rocess  may be modeled by 

sample  and holds and a function computer.  F o r  convenience in  

modeling, the function is res t r ic ted  to l inear  combinations of the 

sampled and held signals.  

Decision Element  (here in  af ter  denoted as PDE). 

The resu l t  is called a Proport ional  
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2. 3. 3 Complete Models of Disc re te  Human Operator  Behavior 

I t  w-ill be seen  .below that the MSDE and the PDE a r e  sufficient 

to descr ibe  a wide variety of d i sc re te  human operator  behavior. By 

properly selecting the s t ruc tu re  of the tw-o e lements  it is possible t o  

develop easi ly mechanized sys temat ic  identification algorithms. 

By utilizing an MSDE to control  the sample  and hold operation 

in the PDE, a very convenient identification procedure resul t s .  This  

procedure has the effect of uncoupling the timing of the decision 

portion of the model  f r o m  the function generation portion. 

2. 4 The Status Of Models F o r  Discre te  Control  Behavior In Human 

Opera tors  

N o  at tempt will be  made h e r e  to consider the l a rge  body of 

work which is concerned w-ith the continuous input-output behavior of 

human opera tors .  That this study is possible at all is due, in par t ,  

to  the fact  that the t r ans fe r  charac ter is t ics  of human opera to r s  in 

single axis  tasks  a r e  s o  w-ell understood. Th i s  allows attention to be 

concentrated h e r e  on a ra the r  specific type of human operator  

behavior . 

2. 4. 1 Visual Scanning Models 

In a ve ry  comprehensive manner ,  Senders ,  Elkind, e t  a1 b 7 ]  

conducted experiments concerned w-ith the visual  scanning behavior 

i 
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Unfortunately, these studies a r e  not applicable to the 

modeling of human opera tors .  The experimental  tasks 

involved ei ther  monitoring of uncorr  elated displays for  l imit  condi- 

tions o r  pilot eye motions during ins t rument  flight in which only the 

pi lot 's  eye motions w e r e  recorded.  

l a t e  on the s ta tus  of determinist ic  scanning models  had the actual  

ins t rument  readings been recorded simultaneously. 

It  would be interest ing to specu-  

The models  t reated the human operator  as a single channel 

device with the displays queueing up for  attention. 

w-ere used to determine  which display deserved attention next. 

probabilit ies w-ere computed f rom long t e r m  proper t ies  of the d i s -  

played signals,  means ,  higher moments and bandw-idth. 

do not utilize the t rans ient  data displayed. 

Probabil i t ies  

The 

The models  

The recent  l i t e ra tu re  on human operator  modeling contains an 

increasing number of investigations involving mult i-axis  tasks.  

Almost  all of the investigators deliberately suppress  visual 

scanning by displaying all s ignals  on a single integrated display. 

a study by Levison and Elkind [19J an uncoordinated tw-o axis  tracking 

task  with separa te  displays w-as identified assuming eye position to be 

known. 

scanning behavior. In any case ,  the displays presented uncorrelated 

In 

No  attempt w-as made  to synthesize a model for the opera to r ' s  
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signals, and there  is no reason to assume that the scanning behavior 

would be  determinist ic .  

The lack of exper iments  in w-hich separated displays p resen t  

corre la ted signals,  motivated the experiment descr ibed in Chapter 6. 

An experiment was performed in which two separated displays p r e -  

sented a i r c r a f t  attitude and altitude to an  operator  w-ho controlled the 

elevator position in a pitch axis a i r c r a f t  simulation. A determinis t ic  

model  for  the opera to r ' s  scanning behavior is synthesized. 

2 .4 .2  Pulsa t i le  And Incremental  Control  Behavior 

In 1964 Knoop C 101 developed a continuous non-linear human 

operator  model  w-hich generated incremental  control  actions. The 

non- lineari t ies simulated known non-linear charac te r i s t i cs  of human 

operators .  

t o r ' s  input-output behavior, but depended on optimal control  consider - 

ations for  some pa rame te r s  while o thers  w-ere manually adjusted to 

produce an adequate match w-ith the experimental  data. 

The identification procedures did not utilize the opera-  

In a similar study, Gould [ 111 utilized a force  computer to 

generate incremental  control  actions. 

model  is reproduced in Figure  2. 1. 

Element is an incremental  change in controller  position. 

tude of the change is determined by the e r r o r  and the e r r o r  ra te .  

Gould's basic human operator  

The output of the F o r c e  P r o g r a m  

The magni-  
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A threshold element ref lects  the opera to r ' s  e r r o r  dead zone. 

bang-bang element t r iggers  a control  action vvhen the predicted e r r o r  

exceeds a threshold. 

A 

N o  systemat ic  identification procedures  a r e  presented and the 

model  is not eas i ly  adapted to other c l a s se s  of d i sc re te  control  

behavior. 

An experiment quite similar to  that of Gould is presented in 

Chapter 5. 

control  actions. The non-linear elements a r e  combined with the 

fo rce  computer and the complete model synthesized using the d i s-  

c r e t e  elements developed in this dissertat ion.  

The operator produces pulsatile ra ther  than incremental  

A model for pulsatile control  actions was proposed by Bekey 

and Angel [ 4 1. The model s t ruc ture  is developed using asynchro-  

nous finite s ta te  automata theory. Based on threshold decisions,  a 

single pulse event ( r a t e  correct ion)  o r  a double pulse event (position 

correct ion)  is generated. 

similar to  the model  presented in Chapter 5 of this study, 

w-as made to identify models of human operators .  

The resultant  mode1 s t ruc ture  is quite 

N o  at tempt 

2. 4. 3 Detection and Switching - 

When human opera to rs  are given differnt plants to control,  

F o r  a controlled element of they se lect  different control  policies. 

i 
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the f o r m  

(2.1)  
K2 

G(s) 1; K1 + - 
S 

Gould found that the opera to r ' s  output could be classified into two 

types of behavior. The type of behavior that predominated depended 

on the values of K and K A series of experiments in which K and 
1 2' 1 

K w e r e  changed systematical ly was  used to determine the parameters  
2 

of a Dattern recognition element. The p a r a m e t e r s  of the recognition 

element w e r e  obtained by plotting the two types of behavior on the 

K2 plane and visually selecting a decision surface  that separa ted  
K1 a 

the points corresponding to the two types of output behavior. If the 

model  contains a subsystem that es t imates  K and K 1 2 then the 

appropr ia te  fo rce  p r o g r a m  can be selected. 

A m o r e  genera l  adaptive switching model  is described by 

Miller  and Elkind [ 9  1.  Miller and Elkind studied the performance 

of human opera tors  in compensatory manual tracking with sudden 

plant changes. 

and/ o r  the magnitude of the plant gain. 

duced f r o m  Ref. ! 9 ] in F igure  2.2. 

The plant t ransi t ions involved changing the sign 

The tracking task  is r e p r o-  

Only three  possible plant changes could be made f r o m  any 

given s tar t ing  o r  base plant. 

the following d i sc re te  functions: 

The operator  w-as required to Derform 
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I Human Controller  
n ( t \  

L 

Figure  2 .2  Tracking Task  of Elkind and Miller  
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1) Detect the d a n t  change 

2 )  Determine*which of the three  possible plants had 

been selected 

3)  Modify h i s  performance character is t ic  to match 

the new plant 

Of the th ree  types of d iscre te  action, the f i r s t  w-ill best  suit 

the purpose of this discussion. 

The experimental  data included the following: 

a) The inputs e( t )  and 4 ( t )  to the human operator 

b) The human operator output 

c )  A binary signal  controlled by the operator that 

s ignals h is  f i r s t  recognition of a plant change 

d)  The binary control s ignal  that caused the plant change 

The model  proposed by Miller  and Elkind is shown in Figure  

2. 3.  

action in P a r t s  B and C. 

dynamic e lements  to identify the new plant. 

P a r t  A of the model  detects  the plant transi t ion and initiates 

P a r t  B uses  trial and e r r o r  sw-itching of 

Based on the r e su l t s  of the plant identification, a new human 

operator  describing function is selected to  provide sat isfactory 

tracking perf orrnanc e. 



FIGURE 2. 3 - Detection and Switching Model 
of Mil ler  And Elkind 
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AE > 

AC > 
Decision 
Element 

2.4.2 The Detection Model 

Plant  ’ Change 

The detection model  may be m o r e  eas i ly  studied f r o m  

F igure  2. 4 which is redrawn and labeled vers ion of F igure  2. 3 

The t ime of the plant change is easi ly determined, as is the 

t ime  a t  w-hich the l inear  describing function of the operator  changed, 

This  may  be seen  in Figure  2. 5 where  the operator  gain is plotted 

as a function of t ime  during a plant transition. The change in the 
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describing function leads  the conscious recognition of the change by 

100 to  300 milliseconds. 

If the values of AE and AC jus t  af ter  plant transition a r e  

plotted, a l inear  relationship is found, Figure  2 .6 .  

be used as a decision surface,  to  detect plant changes. 

values of AE and AC l ie  below- the line, the plant has  changed. 

they a r e  above it, then no plant change has  occurred.  

usual  dead space  around the origin where the operator  e lec ts  to 

make no decisions. 

This  curve can 

If part icular  

If 

There  is the 

Mil ler  and Elkind obtained the coefficients of the detection 

model  f r o m  the graph in Figure  2 .6 .  

obtained by recording AE and AC one "reaction t ime' '  before the 

over t  operator  action. N o  attempt was made to adjust the model  

coefficients, or to  identify the opera to r ' s  react ion time. 

The points plotted were  

In a different approach to the same problem, Weir and Phatak  

[ 4 4  devoted their  attention to the switching behavior of the opera tor  

during sudden plant transitions. 

(1) retention, in  which the opera tors  describing function remains  

unchanged, (2) optimal control, in  which the operator  acts as a t ime 

optimal  bang-bang control  sys tem,  and ( 3 )  adjustment to steady state 

tracking with the new plant.  

Their  model  contained th ree  phases:  

Complete models  were  obtained for  
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FIGURE 2.6 - Decision Surface For Detection Element 
(Mil ler  and Elkind, 1965) 
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opera to r s  during each phase, however, no at tempt w-as made to 

synthesize a detection and sequencing system. 

2.4. 4 Summary  Of The L i t e ra tu re  Review- 

The cha rac te r i s t i c s  of d i sc re te  control  behavior, found in a 

In the next chapter the number of experiments  have been reviewed. 

s t ruc tu re  of two genera l  purpose decision elements  (the MSDE and 

PDE)  for  modeling d i sc re te  control responses is presented. 

be show-n that the resul t ing elements  are sufficiently general  as to 

include a l l  of the types of behavior observed in the studies reviewed 

in this chapter.  

I t  w-ill 



CHAPTER 3 

BLOCK STRUCTURED DECISION ELEMENTS 

3 .  1 General  Fea tu re s  Of Decision Elements  

This  chapter p resen ts  two types of decision e lements  in a 

block diagram f o r m  suitable fo r  configuring models  of d i s c r e t e  human 

operator  behavior. 

identification schemes  and typical applications of the decision 

elements.  

Subsequent chapte rs  will descr ibe  sys temat ic  

The input-output relat ionships of the decision e lements  'are 

sufficiently general  as to allow- a wide variety of d i sc re te  human 

operator  behavior to  be modeled. 

the blocks w-ill, combined with thei r  identification schemes,  allow- 

It is hoped that the generali ty of 

d i sc re te  behavior to be modeled in the same manner  that continuous 

operator  behavior is modeled by describing functions, and pow-er 

spec t r a l  density measurements .  

The f i r s t  decision element  descr ibed below- is the Multi-State 

The inputs to  the element are  continuous Decision Element  (MSDE). 

t ime  varying signals and the outputs are binary signals. The MSDE 

is intended to model  operator  decisions betw-een d i sc re te  al ternatives,  

for example: sw-itch c losures ,  eye motions betw-een separate 

36 
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displays, decisions to initiate d i sc re te  o r  pulsatile control  act ions ,  

etc. If the binary outputs are  view-ed as the s ta tes  of a digital r eg i s -  

t e r ,  then each possible decision of the operator  can be decoded f r o m  

the contents of the reg i s te r .  In i t s  s implest  form, the MSDE can be 

viewed as a switching locus generator.  

The second element descr ibed below- is the Proportional De- 

cicion Element  (PDE). 

varying signals and one o r  m o r e  binary control  signals. 

of the PDE is a scalar function of the input signals a t  a t ime de t e r -  

mined by a binary control  signal, the scalar output appears  a t  a t ime  

determined by the same or another binary control  signal. 

control  signals may be derived f rom a timing circuit ,  o r  in m o s t  

cases, f rom an MSDE. 

tional o r  function generation behavior of human operators .  

behavior might include: 

The inputs to the PDE are  continuous t ime 

The output 

The binary 

The PDE is intended to model the propor-  

Such 

the selection of the amplitude and w-idth of a 

pulsati le control  action, the magnitude of a s t ep  change in thrott le  

position in an a i rc ra f t ,  etc. An MSDE decides when to make the 

change and the direction of the change and a PDE determines  the 

amount of the change. 

3 . 2  The Multi-State Decision Element  MSDE 

Based on the analysis in the previous chapter,  it can  be 

assumed that a mul t i- s ta te  decision process  is utilized by human 
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opera tors ,  when a decision mus t  be made betw-een distinct a l t e rna-  

tive s . 

3. 2. 1 Definition of the Basic  MSDE 

An input-output relat icnship for  a general  mul t i- s ta te  dec i  s ion 

element  (henceforth designated MSDE) may  be based on the assump-  

tion that portions of the input space  formed by the l inear combinations 

of the signals applied to the MSDE are associated with des i red  binary 

output s ta tes :  

- 
h = (T(f(x)) ) ( 3 . 1 )  

where  x is an n vector of t ime varying input signals,  f(x) is an m 

vector of t ime  varying functions of the input vector x, forming deci-  

s ion sur faces  in the input space,  T is zn m vector of t ime  varying 

binary signals resul t ing f rom a threshold operation on the vector 

f(x), 

and finally, I; is a p vector of binary output signals,  only one of which 

m a y  be t rue  a t  a time. 

3.1. 

is a p vector of boolean functions of the binary signals T(f) 

This relat ionship is summar ized  in F igure  

The components of the input vector x, may be any signals 

which enter  into a causal  relat ionship with the binary output vector g. 

These signals may  be determinis t ic  signals f r o m  the sys tem,  random 
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Figure  3.  1 The General  Multi-State Decision Element (MSDE) 

signals,  pas t  samples of the signals, t ime delayed signals,  human 

operator  outputs, etc. 

d i sc re te  signals,  outputs of hold devices, binary signals and encoded 

continuous signals.  

fo r  convenience, i t  m a y  be assumed that one and only one a t  a t ime  

The signals may be continuous analog signals,  

The outputs of the MSDE are  binary signals and 
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- 
m a y  be true.  

to a possible s ta te  in the sys tem being modeled. 

Each component of the output vector,  h, corresponds  

The MSDE is a pure  combinatorial  network w-ith no d i rec t  

feedback paths. 

modeled, it  mus t  be obtained by including delayed o r  sampled and 

h e l i  s ignals a s  additional components of the input vector. 

cally the identification p rocess  descr ibed below allows theinput vector 

to contain an unlimited number of components. Practical ly,  the t ime 

required to complete the identification depends on the number of 

components. 

If stDrage is a necessa ry  p a r t  of the p rocess  being 

Theoret i-  

3 . 2 .  2 Extension Of The MSDE To Include T ime  Delay 

In o rder  to synthesize and identify models of human opera to rs  

w-hich ref lect  d i sc re te  decision making behavior, the ope ra to r ' s  

d i sc re te  action m u s t  be measurable .  

m e a s u r e  o r  infer f rom observable signals the exact t ime the operator  

changed s ta te  and the s ta te  a r r i ved  at. Decisions of this type will be 

called over t  o r  measurab le  decisions. In many human operator 

modeling situations, the model  decision mus t  precede the over t  

action, allowing the model  to simulate react ion t ime and possibly 

computational o r  thought p rocesses .  The MSDE described by equation 

3 .  1 and shown in F igure  3 ,  1 is suitable for the development of models 

That is, i t  mus t  be possible to 
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w-hich produce a change in state a t  the s a m e  t ime that the human 

operator  executed his  d i sc re te  act. 

The MSDE is eas i ly  modified to reflect  this behavior by re-  

defining the input-output equation. 

defined as: 

The output of the MSDE w-as 

K = B C T(f(x))] 

and a delayed MSDE output may be defined: 

- 7 s  - - 
b = e  h 

( 3 . 2 )  

( 3 . 3 )  

where 7 is the t ime delay required between the covert  or inaccess-  

ible human operator decision and the over t  decision 7 seconds la ter .  

The general  MSDE shown in Figure  3 . 1  is redrawn in Figure 3 . 2  to 

re f lec t  this additional requirement.  

- 
The d i rec t  output vector, h may be used to tr igger input 

dependent sampling devices , initiate computational processes  , etc. 

The delayed output b m a y  be used to initiate the control action. 

If the decision element is used to model  an over t  control 

action, the time delay element is not needed. 

if the actions being modeled were: 

This might be the case  

operation of a pushbutton, switch 



. 

x 
n .  

X 
rn 

Figure  3 . 2  Modified MSDE 

closures ,  eye motions, etc. 

separa te  the cover t  decision f rom the over t  act. 

Fo r  these actions there  is no need to 

3 . 2 .  3 Complete St ructure  Of The MSDE 

The input vector t r a ce s  out an event t ra jectory  in the space  

formed by l inear  combinations of the components of the input vector. 

The position of the event t ra jectory  relat ive to the decision sur faces  

of the MSDE determines  which of the p output l ines is to be true.  
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The proper  output is obtained by positioning hypersurfaces  in 

the input space such that the event points corresponding to a par t icu-  

lar desi red output s ta te  are separated f rom all other event points. 

If hyperplanes are used to per form the separation,  then a 

r a the r  s imple  mechanization is possible,  and the f .  become 
J -  

is included in the input vector 
xO* 

If an additional component, 

such that 

x = I  
0 

then 

n 
f .  (x) = 5= a . .x .  

1 = 0  1J 1 J 
j = 1, 2, ... rn ( 3 . 5 )  

The threshold operator  is defined by 

for Y ' O  
0 for y - <o 

and 

n 

( 3 . 6 )  

If T(f(x)) is 1 ( t rue)  the event point is above the hyperplane, 

By utilizing a i f  T(f(x)) is 0 (false) then i t  is below the hyperplane. 

sufficient number of hyperplanes and properly selecting the 
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- 
boolean function, B i t  is Dossible to generate  the decision sur faces  

requi red  to produce the des i r ed  outputs. The complete mechanization 

of the MSDE is show-n in F igure  3 .  3 .  

C a  x 
o i l  i 

X n 

X r A 

> n  

> C a  o 

0 

c ? 

i2 x i 1 
X 

* 

X 
0 >. n I 

> E a  x o im i 1 
X 

xn > 

Figure  3 .  3 Complete MSDE 
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3.2 .4  Application Of The MSDE To The Generation Of Complex 

De c i s  ion Surf aces  

Although the hypersur faces ,  generated within the MSDE, a r e  

planes in the input space,  they may be made to represen t  complex 

sur faces  by properly s d e c t i n g  the components of the input vectors  

- 
and the boolean functions, B. A ra ther  simple phase plane d iagram 

is shown in F igure  3. 4. The MSDE is to determine whether the 

event t ra jectory  is in region al, a2, o r  a3, and produce corresponding 

output s ta tes .  

, 
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If an input vector is formed f rom 

x = 1  
0 

x = y  
1 

.2 x = y  
3 

2 
x = y  

4 

then hyperplanes in the input space may be defined as 

1 

2 

f (x) = x 

f (x) = x 

1 

2 

3 3 1 0 

4 3 1 0 

5 3 4  0 

f (x) = x t 5x t25x 

f (x) = x - 5x t25x 

2 
f = x  t x  - r x  

( 3 . 9 )  

The resul tant  threshold functions a r e  tabulated in Table 3.  1 .  
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Table 3 ,  1 Threshold Functions F o r  the Decision Surface Example 

Geometr ic  Significance 
of output  

in the r ight  half plane 

in the left half plane 

upper half plane 

lower half plane 

outside parbola 1 

inside parabola 1 

outside parabola 2 
r 

inside parabola 2 

outside c i r c l e  

inside c i r c l e  

It is now possible to  determine so  that three binary output 

s ignals ,  a a and a a r e  generated, corresponding to the regions 
- -  

1’ 2’ 3 

and a indicated on Figure  3.4. 
al’ a2 3 

(3.10) 

- 
a is wri t ten in the s a m e  manner ,  and 

2 

i 
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(3.11) 

where the p r imes  indicate logical complement. 

Thus hyperplanes in the input space may rep resen t  complex 

decision su r faces  in the s ta te  variable space  of the system. 

complete MSDE for this example is shown in Figure  3. 5. 

The 

In m o r e  complete examples,  below, the MSDE will be applied 

to modeling of the human opera to r ’ s  decision to initiate pulsatile 

control actions. 

the s t ruc ture  of the decision sur faces  f rom a p r io r i  knowledge. 

identification consisted of testing and adjusting the free coefficients 

of the MSDE until an optimum fit was obtained between the models 

output and the experimental  data. In a second example, i t  was not 

possible to make  any reasonable ext imates  of the MSDE s t ruc tu re  

and the identification procedure required a g rea t  deal  m o r e  effort  

and computer time. 

In one of the examples i t  was possible to de termine  

The 

3. 2. 5 Relationship Between The MSDE And Pa t t e rn  Recognition 

Devices 

There  is a definite relationship betw-een the s t ruc tu re  and 

mechanization of the MSDE and binary pat tern recognition devices. 

The basic concept is the s a m e  in both devices,  the partitioning of the 

input space  by hyperplanes to establ ish decision surfaces .  In binary 

i 
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8 * 

Figure  3.  5 Complete MSDE F o r  Example 
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pat tern  recognition devices, the input vector contains only binary 

signals,  and the resultant  input space  is a binary space. 

mechanization of the tw-o devices are identical, their  difference lies 

in the u se  of only binary inputs in pat tern  recognizers .  

The 

The advantages of the binary recognition device are the ease 

of mechanization, and the convenient identification algori thms.  The 

disadvantages in their  application to human operator modeling r e su l t  

f r o m  the need to encode the input signals and the fact  that the r e -  

sultant  decision element offers no insight into the p rocess  by w-hich 

the decisions were  made. 

3.  3 The Proport ional  Decision Element (PDE) 

Human opera to rs  utilize proportional decisions while perform- 

ing manual  control  when they mus t  decide how la rge ,  how long o r  how- 

f a s t  to make a control  action. The proportional decision element 

(henceforth to be denoted as PDE) combines function generators ,  

hold elements and logical s t ruc ture  to produce the d i sc re te  decision. 

This  yields a block element which is easi ly utilized in complete 

sy s t em diagrams to configure human operator  models. 

of a PDE may be used to model  many types of human operator  be-  

havior: amplitude and w-idth of a pulsatile s t i ck  motion, t ime a 

button o r  bang-bang controller  is closed, etc. 

The output 

I 
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3. 3. 1 Definition Of A PDE 

The output of the PDE is a scalar s ignal  obtained by l inearly 

combining the input s ignals  to the PDE at some  time, determined by 

an  applied binary signal  G: 

(3.12) 

where  x (t) is an r vector the components of which a r e  t ime varying 

signals applied to the input terminals  of the PDE. The input vector 

x(t)  is sampled and held a t  the t ime 

output, y of the PDE is obtained f rom 

becomes true. The s ca l a r  

1’ 

.l. 

I 

y1 = a +a 0 
(3.  13) 

where  a is an r vector containing a rb i t r a ry  r e a l  coefficients and a 

an a rb i t r a ry  r e a l  constant. is added 

is 
0 

If an additional component x 
0 

to the input vector x such that  

x = 1  (3.  14) 
0 

then the constant a , m a y  be included in the coefficient vector,  a 
0 

and 

r 
y1 = a . x  (3. 15) 
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is held a t  the output until E ,  becomes t rue  The value of y 
1 

again, causing a new- yalue of y to be generated. In some modeling 
1 

situations an additional delay, 7 ,  is required t o  simulate the react ion 

and /or  computation t ime  of the operator .  

(3.  14) 

The input-output relat ionship is summar ized  in F igure  3 .  6. 

A s  with the MSDE, the input vector m a y  contain m e a s u r e -  

ments  f r om the sys tem being modeled, the human opera to r ' s  inputs 

and outputs, random signals,  binary signals,  outputs of f i l t e r s ,  t ime 

delays and hold devices. 

The PDE may  be in terpre ted geometrical ly by considering 

the r t 1 dimensional space  formed by the input vector x and the 

s ca l a r  output y. A hyperplane in this space w-ould take the form:  

r 
y = z a.x .  

1=0 1 1 
( 3 .  17) 

which is jus t  the equation of the function generat ion portion of the PDE 

(3 .  18) I y = a x  

The identification problem consists  of finding the best  f i t  

hyperplane to the event points. An event point is determined by the 

input vector at the t ime the signal C becomes t rue ,  and the c o r r e s -  

ponding value of the des i red output of the PDE. 

- 
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x 
0 .  

X 
1 .  

X 
2 .  

x-r , 

c 

- 

delayed 
scalar output 

y1 
scalar 
output 

T binary control  signal  

F igu re  3 .  6 Input-Output Relationship Of The 
Proport ional  Decision Element  (PDE) 
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3.  3 . 2  Application Of The PDE To The Generation Of Complex 

Functions 

and 

va r  

The use of hyperplanes in the space formed by the input vector 

the sca la r  output is not res t r ic t ive .  If many functions of a single 

able, w, a r e  included in the input vector to the PDE, then a 

hypersurface is formed in the lower dimensional space of that v a r i -  

able. Consider the following example in w-hich a 6 dimensional 

hyperplane is equivalent to a two dimensional curve. Let  x be the 

input vector to a PDE the components of w-hich a r e  functions of a 

single time varying variable , w( t) : 

x = 1  
0 

x = w- 
1 

2 

3 

4 

5 

2 

3 

4 

5 

x = w- 

x = w- 

x = w- 

x = w- 

The s ix  dimensional hyperplane generated by the PDE is: 

y = a x  t a x  t a x  t a x  t a x  t a x  
0 0  1 1  2 2  3 3  4 4  5 5  

(3 .  19) 

( 3 . 2 0 )  

where  y is the s c a l a r  output of the PDE, which reduces to a fifth 

o r d e r  polynomial in the two dimensional space  formed by w- and y: 
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2 3 4 5 
y = a  t a w + a w  t a w  t a w -  t a w -  0 1  2 3 4 5 (3.21) 

Higher dimensional su r faces  can be obtained by forming the 

input vector x f r o m  the terms of a mul t i  dimensional power series, 

e. g. 

x = 1  
0 

x = w- 
1 

x2 = 
2 

2 

x = w- 
3 

4 
x = z  

(3.22) 
x = wz 

5 

x6 = 

7 

8 

9 

3 

3 x = z  

2 
x = w-2 

2 x = w - z  

A s  many t e r m s  may be included a s  a r e  needed to f i t  the 

event points to the accuracy desired.  

The advantage in using l inear combinations of the components 

of the input vector lies in the simplicity of the required identification 

scheme. The identification scheme described in the next chapter 

can be used to determine the coefficient vector, a, for  input vectors  

of considerable length. 

i 
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3.  3 .  3 Non-linear PDE ' s  

To  represen t  a. three  dimensional 

qu i res  the t e r m s  shown in equation 3 . 2 2 .  

surface  with the PDE re-  

The formation of the input 

vector would requ i re  a la rge  number of multiplications. I t  is not 

reasonable to p resume that the human operator  c a r r i e s  out all of 

this ari thmetic.  

The operator  may  be capable of pat tern  recognition o r  some 

other complex process  which would requ i re  a high o rde r  hypersur-  

face in the PDE. 

PDE, may  be overcome by allow-ing models in which the coefficient 

vector,  a ,  en te r s  non-linearly. F o r  example, 

This difficulty, result ing f r o m  the s t ruc tu r e  of the 

U 
y = (a'x) ( 3 . 2 3 )  

w-here the vector a and the s ca l a r  a a r e  to be determined. 

tage in the non-linear PDE is that complex surfaces  can be generated 

in the s ta te  space  of the sys tem without introducing a l a rge  number 

The advan- 

of non-linear elements into the model. Such a PDE is shown in 

F igure  3. 7. 

Only one non-linear element is required.  The disadvantage 

is that the identification is much m o r e  difficult and the resul tant  

coefficients need not be unique o r  even the bes t  available, as their 



I NON -LINEAR PDE 

5 7  

Figure  3.7 A Non-Linear PDE 

computation depends on s ea r ch  procedures ra ther  than di rect  

computation. 

Once a l inear PDE has been identified, snother identification 

procedure  could be used to f i t  the surface  w-ith a non-linear PDE. 

F o r  m o s t  human operator  modeling, the l inear PDE is sufficient 

and no at tempt wi l l  be made here  to identify non-linear PDE's.  



CHAPTER 4 

IDEHTIFICATION TECHNIQUES 

4. 1 Introduction 

This  chapter presents  identification techniques applicable to 

general  purpose digital or  hybrid computers.  

eas i ly  prepared  as standard programs which might encourage the 

utilization of the block s t ruc tured  PDE and MSDE elements  to 

The procedures are 

descr ibe  human. operator  behavior. 

4. 2 Identification Of The PDE 

The equations defining the PDE were  presented in the p r e -  

vious chapter. They were  

* 
x = x(t)  1 c (4.1) 

* 
where x 

x(t)  a t  the t ime 

is an r vector the components of which a r e  the values of 

becomes t rue ,  The PDE m a y  generate  two outputs: 

I *  

Y 1 = a x  

and 

-7 s 
y2 = e (a’x*) 

(4.2) 

( 4 . 3 )  

where y and y are s c a l a r s ,  a is an  r vector of unknown coefficients, 

and T is an  unknown time delay. 

1 2 

58  
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It is assumed in  the following that  the input vector has  been 

selected and that all of the components of the input vector are known 

functions of t ime, 

The identification of a model  is accomplished by adjusting the 

pa rame te r s  of the model  until a c r i te r ion  function is minimized. 

The procedure  is shown schematically in F igure  4. 1. 

that the t ime h is tor ies  of the r components of the input vector a r e  

known. 

at which the new- values appeared, t., i = 1, 2, --N. The binary 

control  s igna l  is assumed to be known. The c r i te r ion  function 

corresponding to par t icular  values of a and T may be  computed. 

next section descr ibes  the parameter  selection algorithm. 

It is assumed 

The actual  outputs z(t.) mus t  be known, as well as the t imes 
1 

1 

The 

4.2.  1 The Identification Algorithm 

The values of z ( t . )  and times a t  which they appear,  ti, mus t  

n 
For  convenience define z to be a vector the components 

1 

be known. 

of which are the N d iscre te  values: 

A 
2 = (Z(tl), z(t,). * .  z(t  )) 

n (4.4) 

A 
Similarly,  let  y be an N vector, the components of w-hich a r e  the N 

d i sc re te  outputs of the model. 

modeled is such that 7 = 0, i.e. the output and sampling operation 

Assume that the process  being 
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P r o c e s s  o r  Cr i te r ion  

P a r a m e t e r  

- ~~ 

Figure  4. 1 The PDE Identification Problem 

a r e  simultaneous. This res t r ic t ion  will be removed la ter .  The 

model  output may be wri t ten as: 

A *  
y = X a  (4.5) 

* 
where X 

the sampled input vector x 

is an Nxr  matrix, the i- th row of which is the t ranspose  of 

* 
a t  the t ime t : 

i 



61 

[x ( t  ) x (t  ) x ( t  ) . . . . xr( t l )  
\ 

0 1  1 1  2 1  

>: x = : x  (t  ) x ( t  ) xz( tz ) .  . . . x (t ) 0 2  1 2  r 2  

x ( t  ) x ( t  ) x ( t  ) .  , . . x ( t )  O N  1 N  2 N  r N  

o r  

* x =  

a model  e r r o r  vector may be defined as 

A A  
E = z  - y  

and a suitable c r i t e r ion  function is: 

f r o m  equation 4. 8 

A 
and substituting for  y f r o m  equation 4. 5 

* / A  * 
8 = & - X  a) (z - X a) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 
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multiplying out 

s ince  f8 is a s ca l a r ,  each term of this equation is a l so  a scalar. By 

symmet ry  

(4.12) 

Thus f8 may be wri t ten  as 

* * 
B = z'z - 2 a ' ~  ~z t ~ / x * / x  a (4.13) 

The model  

s ca l a r  c r i t e r ion  function. 

vector,  a, i t  is unimodal and by construction, i t s  s tat ionary point 

is a minimum. 

e r r o r  vector is minimized by minimizing the 

Since fl is quadratic in  the paramete r  

The gradient  of f8 is 

The s ta t ionary point of f8 is obtained f r o m  

v a g  = 0 

which yields 

* I  ; * *  
X'X a = X  

(4. 14) 

(4. 15) 

(4. 16) 

finally, solving for the paramete r  vector a: 



* -1 x*,k 
a = EX *'X 3 

6 3  

(4. 17) 

where  [ 1 *' indicates 'matr ix  inversion. 

If 

de t  [X*/X* 3 f 0 (4. 18) 

then the paramete r  vector,  a, which resu l t s  is unique. 

c r i t e r ion  function w-as based on the squared model  error, the para-  

me te r  vector,  a, minimizes  the s u m  of the squared e r r o r s .  

Since the 

The optimization procedure developed above is equivalent to 

Since the coefficients, a, enter  l inearly,  l eas t  squares  regress ion.  

the identification m a y  a l so  be viewed as the solution of an  over-  

specified s e t  of simultaneous equations 

A *  z = X a  (4. 19) 

which resu l t s  i n  N equations in r unknowns. 

4.2. 2 Interpretat ion Of Results And Graphical Aids 

The PDE may  be viewed as a multi-dimensional function 

generator.  

two signals, say  q l ( t )  and q2(t),  then the N event points 

("(ti), ql( t i) ,  q2(ti)) m a y  be plotted. 

ra ted by the PDE (y(t.),  q (t,),  q2(ti)) may  be plotted on the same 

If the input vector is formed by algebraic operations on 

The model  event points gene- 

1 1 1  
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co-ordinate system,  o r  the sur face  generated by the PDE can be 

obtained by systemmatical ly  applying values of q and q to the PDE. 
1 2 

Tw-o dimensional plots of this type are easily obtained. With  

By suitable mechanical  a ids ,  three dimensional plots can  be made. 

viewing these plots, one can  locate areas of poor model performance 

o r  gain insight into the original  p rocess  being modeled. In the for- 

mer case ,  the input vector can be modified and a new computational 

cycle ca r r i ed  out. 

Beyond th r ee  dimensions the plotting p roces s  becomes 

laborious. 

necessary .  

In these cases, some  other f o r m  of graphical  aid is 

The numerical  value of the c r i t e r ion  function m a y  be used to 

m e a s u r e  the effectiveness of different input vectors.  The same 

1 optimal 
n 

information may  be presented in a two dimensional plot of y(a 

A 
against  z. If the model were  perfect  the c r i t e r ion  function, b would 

n 
), z)  would line on a s t ra igh t  line of 

A be z e r o  and the points (y(a optimal 

unity slope. Systematic model  e r r o r s  w-ill appear as groups of 

points off this s t ra ight  line. In many cases the necessary  additions 

to o r  modification of the input vector can be determined f r o m  the 

A i l  
y, z plot. 
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The procedure  developed above can be mechanized on any 

general  purpose digital computer. 

places const ra ints  on the dimensionality of the a rays ,  in part icular  

X . W i t h  even moderate  s i ze  computers (i. e. , the IBM 1620, 1401) 

it is possible to handle 70 equations in 5 unknowns. 

The memory  s ize  of the computer 

* 

If l a rge  digital 

p roces so r s  are available, the number of equations and unknow-ns that  

m a y  be t rea ted a r e  practical ly unlimited. 

puter s w-ith graphical  display equipment and on line operating sy s  t ems  

are obvious. 

The advantages of com-  

4. 2. 3 Extension Of the Algorithm To Include The Identification Of 

T ime  Delay 

In the previous discussion i t  was assumed the input vector x(t) 

was  sampled at the s a m e  t ime the output appeared in the original 

sys tem,  i. e. a t  t . 
i 

m u s t  be removed. 

This is not always the case  and this res t r ic t ion 

In some situations i t  is possible to determine 

when the sampling occurred in the original system. 

case ,  then two t imes  t 

output events. The t imes  t 

occur red  and equation 4. 1 may  be redefined as 

If this is the 

and t. may  be determined for each of the N 
si  1 

a r e  the t imes at w-hich the sampling 
si  

* 
x = x(tsi) i = 1, 2,  . . . N (4.20) 
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identification is c a r r i e d  out by the procedure  described above. 

output of the function generator portion of the PDE does not 

appear a t  the output of the PDE until time t . 
i 

or  a lmost  constant delay between t and t, ,  then a second control  si 1 

s igna l  is unnecessary,  and a t ime delay of magniture 7 may be used 

where  

If there  is a constant, 

N 
7= - z (4.2 1) 

1 
N 1=1 (ti - tSi) 

The availability of the sample time, tsi8 makes  this case very 

similar to that a l ready considered. 

A m o r e  common situation is one in which the time, t is 
i’ 

available and t 

sampled mus t  be inferred indirectly f rom the data available: x(t), 

z ( t , )  and the t,. If the input vector is at  all representat ive  of the 

decision process  utilized by the operator, then the model  will yield 

optimum resu l t s  when the input vector a t  t ime t. - 7 is used. 

is not. The t ime a t  w-hich the input vector w-as 
s i  

1 1 

Thus if 
1 

* 
x = X(ti - 7 )  (4.22) 

and T is studied systematically,  the value which produces the mini-  

m u m  value of the c r i te r ion  function is the optimal T. The resul tant  

value of 7 will  depend on the par t icular  components of the input 

vector.  
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The PDE has  been identified by assuming that the t ime t o r ,  i 

i n  the l a s t  case ,  t. - T is available in the f o r m  of a binary control 

s ignal  

If this signal  is not available in the model, then it must be generated 

by a binary MSDE. 

1 '  

(t) which goes f r o m  false to t rue  a t  the time t o r  t, - 7. 
i 1 

The inputs to the MSDE m a y  be the same as those 

used in the PDE, o r  may  include other signals relevant  to the deci-  

sion, w-hich we re  not relevant  to the magnitude of the PDE event. 

The des i red  output of the MSDE is the binary signal 

j u s t  described.  

(t) of the fo rm 

This  procedure  uncouples the identification, in that the magni-  

tude model  and the t ime delay a r e  determined f i r s t  and the control  

element last .  P rocedures  to identify both simultaneously w-odd be 

excessively complex. 

4 .2 .4  Stochastic Proper t i es  Of The PDE 

Once the identification procedure has  been completed, a 

model  remnant vector can be defined 

A A  E = z - y ( a  T ) R opt' opt (4.23) 

A non-zero remnant  resu l t s  f rom shor t  t e r m  time variat ions 

in the p rocess  being modeled, random perturbations of the p rocess ,  

noise corruption of the measured  signals, and finally model  
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inadequacies. If i t  is felt that the model  is adequate, then the rem- 

nant is a measu re  of the stochastic p rocesses  in the original  system. 

The distribution function of the N components of the remnant  vector 

is easi ly  computed, as are its mean  and higher moments. 

identification procedure  above, is such t h a t  the mean is zero.  

The 

The 

moments  may be useful a s  m e a s u r e s  of performance,  s ta te  of opera-  

tor  training, etc. Alternatively, noise with the s ame  charac te r i s t i cs  

could be added to the model  output to produce a stochastic human 

operator model. 

It is not feasible he re  to determine whether the remnant  is 

functionally dependent on the observable signals in the process  being 

modeled or  stochastic in origin. 

4. 2. 5 Parti t ioning Of The Input Space 

Another aspect  of the identification procedure  is that it is 

possible to perform the identification separate ly  in various regions 

of the space formed b f  the input vector and the output y. 

If the output of the PDE rep re sen t s  arm motion of a human 

operator ,  the modeling m a y  be performed for  positive arm motions 

and negative arm motions separately.  

gate : asymmetr ic  control  actions by comparing the two models. 

It is then possible to investi-  
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A s  another example, a ssume that the input vector to a PDE is 

formed f rom e r r o r  signals presented to a human operator.  By model- 

ing the control  action result ing f rom event points inside a hypersphere 

of radius  R separate ly  f rom those outside, i t  is possible to study the 

effects of e r r o r  amplitude on the opera to r ' s  response.  

4. 3 Identification Of The MSDE 

The MSDE was  designed to mechanize a concept that is eas i ly  

in terpre ted geometrically. A pr io r i  know-ledge is used to hypothesize 

a t r i a l  s t ruc ture  of decision surfaces ,  constructed f rom hyperplanes. 

Working backward f rom the hypothesized decision surfaces ,  the 

components of the input vector a r e  selected. 

l inear combinations of the components 

called the input space. 

varying signals. 

space  is called the event trajectory.  

c r o s s e s  a decision sur face  the output vector of the MSDE is changed. 

The space  formed by 

of the input vector x(t)  is 

The input vector, x(t),,is composed of t ime 

The path t raced out by the input vector i n  the input 

When the event t ra jectory  

The output of the MSDE w-as given in equation 3.  1 and shown 

schematical ly in F igure  3 .  1, a s  

- 
h(t )  = B(TLA x ( t ) ] )  (4.24) 

where  x(t) is an n vector of input signals, A is an m x n matrix of 
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a rb i t r a ry  r e a l  coefficients, T is a vector threshold operator action 

on the m vector Ax such that the components of T(Ax) say  T are 

de fined by 

i 

0 i f ( a , x  + a  x t . . . + a . x ) < O  
io o il 1 i n  n - 

- 
B (T) is a p vector of boolean functions of the vector T. 

- 
h is a p vector of binary outputs. 

It  is assumed that the s ta te  of the process  being modeled is known, 

and is denoted by 

- 
k (t) 

where  I; ( t )  is a p vector of binary s ta tes .  The identification of the 

model  is ca r r i ed  out by adjusting the parameter  matr ix ,  A, until 

h ( t)  and k (t) a r e  identical. 

outputs w-hich are of the proper s ta te  and which appear a t  the co r r ec t  

times. ( t )  mus t  be formal ized by 

defining a suitable c r i te r ion  function. 

The model achieves this by producing 

The concept of matching h (t) and 

4. 3.  1 Selection Of A Cri ter ion Function F o r  The Identification Of 

The MSDE 

An e r r o r  function is defined which ass igns  numerical  values 

to the various ways in which h and k can occur: 
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1 
P r o c e s s  
- 
k(t) 

0 

If the two states are identical, then E is zero.  Various magnitudes 

-- 

t 

are assigned to the possible e r r o r s  depending on their physical 

s ignif icance. 

F r o m  the e r r o r  function, a c r i te r ion  function can be defined, 

as 

where  t is the length of the r eco rd  k (t).  0 (A) measured the 
m 

difference between two t ime varying binary vectors. This  alone is 

not enough to measu re  the performance of the model. Consider the 

example of Figure  4.2. 

Figure  4 .2  Extraneous Model Outputs 
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A s  seen f r o m  Figure  4.2, the c r i t e r ion  function may  be 

small, without eliminating a la rge  number of extraneous outputs, 

which because of their  shor t  durations, do not significantly affect the 

value of 6. To prevent  this, the s ta te  change occurr ing neares t  the 

th 
state change of <is  a rb i t r a r i l y  cal led the i model  response.  A l l  

other responses  are false responses  and are counted. Let M be the 

total  number of false responses .  The augmented c r i t e r ion  function is 

t 
m - -  

0 = K1 JI E (h,k) d t  + K2M 
0 

( 4 . 2 7 )  

where  K and K a r e  weighting factors .  
1 2 

If the model  is required to lead the p rocess  by a t ime 7 ,  then 

the c r i t e r ion  function m u s t  be modified: 

t 
m 

-78- - 6 = K1 E(e  h, k)  dt  t KZM (4. 28) 
0 

If T is s e t  to zero ,  this  reduces  to the previous case.  

4. 3.2 The P a r a m e t e r  Adjustment Algorithm 

.I. 

If an  initial s e t  of coefficients, AT, is known, then the cri-  

ter ion function m a y  be evaluated: 

If the pa r ame te r s  are incremented and decremented by a fixed 



7 3  

amount A ,  one at a time, then 2 (n m) values of 6 a r e  computed. 

Suppose decrementing one paramete r ,  a , ,  by A produces the minimum 

value of 6. 
‘J 

A new paramete r  matrix can be defined by 

The process  is repeated until none of the t r i a l  parameter  mat r ices  

produce a lower value of 0. The value of A can be doubled o r  halved 

and the s ea r ch  attemped again. If a better value of 6 is found, A is 

re turned to i t s  original  magnitude and the s ea r ch  resumed. If a 

better  value is not found A is modified again, until A reaches  a pre-  

s e t  l imit ,  a t  which t ime the s ea r ch  algorithm is terminated. 

The threshold element selected has  a useful property 

T(KAx) = T(Ax) (4. 31) 

i f  K is a positive non-zero scalar constant. 

possible to  normalize the A matrix a row a t  a time. 

This property makes  i t  

If this is done at each step, o r  periodically, the range of the 

e lements  of the paramete r  ma t r i x  is res t r i c ted  to 

(4.32) 

The adjustment increment,  A J  m a y  be selected as 10% o r  1% 

of full scale ,  depending on the part icular  problem. 
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4. 3. 3 Selection Of Starting Values 

The problem of select ing s tar t ing  values for  the pa ramete r  

m a t r i x  , A,  is not easi ly solved. A pr io r i  knowledge concerning the 

m o s t  likely positions of decision sur face  leads to the best  es t imates .  

If a pr io r i  knowledge is not available, then random s e a r c h  is used. 

A random number generator  is used to produce a l a rge  number of 

pa ramete r  mat r ices .  

the best  ones used as s tar t ing  conditions for  the s e a r c h  algorithm. 

The value of 6 is computed for each matrix and 



CHAPTER 5 

AN ASYNCHRONOUS PULSE -AMPLITUDE PULSE -WIDTH MODEL 

O F  THE HUMAN OPERATOR 

5. 1 A Discrete  Control  Exper iment  

When the dynamics of a controlled element contain tvvo o r  

m o r e  integrations, the performance of the human operator approaches 

that  of a bang-bang system. In par t icular ,  a pure  iner t ia  (two inte-  

grations) usually elicits  pulse responses  f r o m  human opera tors  [i4,@. 

A mathemat ical  model  to  r ep re sen t  this output behavior could contain 

sampled inputs w-ith continuous supervisory control  of the sampling. 

This  supervised sampling extends the periodic sampling of previous 

models [2, 7 to aperiodic input-dependent sampling. 

nature  of the output makes  it possible to relate pulse events to deci-  

sion sur faces  in  the e r r o r  phase space L301 .  

The pulse 

The object of this chapter is to  descr ibe  the development of a 

human operator  model  which produces d i sc re te  outputs in response to  

continuously presented gaussian random inputs. 

dures  for  the complete identification of all model parameters  are 

described.  

Computer proce-  

75 
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5.2 Statement Of The P rob l em 

A block d iagram of the compensatory tracking situation used 

in this study is shown in F igure  5. 1 and a portion of a typical t r ack-  

ing record  is found i n  F igure  5.2. 

operator  output (s t ick position) revea ls  a sequence of pulses  w-hich 

a r e  roughly tr iangular i n  shape. 

actual  human operator  output was converted to the idealized human 

operator  output, as seen  in Figure  5.2. 

t r iangular  pulses as ideal  human operator  pulses is a rb i t r a ry ,  and 

other pulse shapes can be used. 

pulse as a separa te  event, uncorrelated with previous Dulses, in 

o rde r  to  keep the s t ruc tu re  of the pulse model  as simple as vossible. 

The use of o re- programmed pulse sequences [Z,ll Dresents an 

An examination of the human 

F o r  the purposes  of this study the 

The selection of symmet r i c  

Fur ther  it was decided to trsat each 

opportunity for future extensions of the work. 

The idealized human operator  outnut can be represen ted  by a 

sequence of three- tuples:  time of the pulse initiation, pulse ampli- 

tude, and nulse width. If a causal  relationship exis ts  between the 

t ransient  human operator inputs and the pulse outputs, then the input 

r eco rd  can be reduced to samples of the input in  the vicinity of the 

pulse initiation. The objective of the presen t  study is the determina-  

tion of the relationships between these  input s a m d e s  and the pulse 

outbut. 
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Since each event is t reated independently, sho r t  term human 

operator  variations aye easi ly  computed. These  variations are the 

difference between the model  outputs and the actual  human operator  

outputs. 

obtained and, if desi red,  can be re inser ted  as model perturbations.  

The distr ibution functions and their  associated parameters  (mean 

and moments)  can be used as measu re s  of performance and s ta te  of 

training. 0 

The distribution functions of these variations can be 

5. 3 The Exper iment  

The compensatory tracking task shown in Figure  5. 1 w-as 

mechanized using an  analog computer, an X-Y oscilloscope and s ide 

arm control  st ick.  

the manual  control  station inside a sound proof enclosure with 

approximately 40 db of audio attenuation. 

a i r c r a f t  type headset  with l ip  microphone for  communication pur-  

poses. 

play oscilloscope. 

contained an  integral  arm rest. 

s t ick  and arm r e s t  into a comfortable position. 

Operator  distraction w-as minimized by placing 

The operator wore an 

The operator  s a t  in  achairwithout  a r m r e s t s  facing the d i s-  

The control  s t ick  was adjustable in position and 

The operator adjusted the control 

The oscilloscope 

was placed a t  eye level. 

The double integrator plant closely resembles  an a i r c ra f t  

pitch axis. The input is elevator position and the output is altitude. 
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In o rde r  to p r e s e r v e  this  resemblance,  the e r r o r  display was a 

rotating needle corresponding to a glide path indicator in a n  a i r c ra f t  

navigational /ILS display. 

z e r o  e r r o r .  

ins t ruments  w e r e  avoided by simulating the glide slope needle with 

Horizontal needle position represented  

The frequency response  problems associated with actual  

an  oscilloscope containing a specially p repa red  edge lighted ret icle .  

The control s t ick  and oscilloscope w e r e  connected to the ana-  

log computer which converted the s t ick  output to  a voltage, computed 

the plant response,  and generated the necessa ry  X and Y axis signals  

for  the e r r o r  display. By solving some of the equations explicitly 

it was possible to obtain the e r r o r  and i t s  exact derivative. The 

inputs to the sys t em were  obtained by f i l ter ing the output of a low- 

frequency gaussian noise source.  The f i l te r  t ransfer  function was: 

K 
F(s) = 

3 
(10s t 1) (s t 1) 

(5.1) 

An F M  magnetic tape r ecorde r  was used to r ecord  tracking 

data,  which was later digitized and s tored  on a disk file for digital 

processing.  

A single subject received approximately 20 hours  training 

over a period of one month. The training sess ions  consisted of 

10 minutes of tracking with 10  minute rest periods. One of the last 

, 
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sess ions  was recorded on magnetic tape, 

s ion approximately 3 minutes of data was subsequently digitized. 

The sampling interval  utilized was 25 milliseconds o r  40 samples  

per second. 

F r o m  the 10 minute ses- 

The digitized data s tored  on the disk file was printed out and 

punched on IBM ca rds  for  permanent storage. 

was punched on IBM cards :  

The following data  

1. The time of the pulse initiation. 

2. The t ime of the pulse termination. 

3. The peak amplitude of the pulse. 

4. The values of e and a t  the following times: 

a. One sample af ter  the initiation of the pulse 

b. At the s t a r t  of the pulse 

c .  The 5 samples  p r io r  to  the s t a r t  of the pulse 

5.4 Hypothesized Human Operator Model 

The input to the human operator  is the e r r o r ,  e(t).  If it is 

assumed that the operator  is capable of differentiating this display 

variable then k ( t )  is a l so  a n  input to  the operator.  The opera tor ' s  

output is a pulsatile control  action charac ter ized  by a t ime of pulse 

initiation, pulse amplitude and pulse width. 
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It is hypothesized that the pulse amplitude and pulse width 

we re  computed f rom samples  of the e r r o r  and e r r o r  rate, and the 

decision to initiate a pulse is based on decision sur faces  in the e r r o r  

phase space. 

The resul tant  model  s t ruc tu re  is shown in  F igure  5.3. 

GENERATOR 

PDE 
-m 

Figure 5.3 Hypothesized Human Operator Model 

5. 4. 1 Pu l se  Amplitude Model 

The amount of pulse amplitude modulation utilized by the 

.- 

human operator  is evidenced in the distr ibution function of the pulse 
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amplitude, s een  in F igure  5.4. 

the significance of the .asymmetry in  the distribution function. 

Fu r the r  work is needed to  evaluate 

The time of the pulse initiation is eas i ly  measured.  This is 

an  over t  operator  decision. 

samples  the e r r o r  and e r r o r  rate and computes the amplitude of the 

Some t ime before this, the operator 

pulse. 

F igure  5. 3.  

The process  is easi ly modeled by a PDE, as shown in 

The PDE ' s  input vector was  

x2(t) = &(t) 

The input vector is formed f rom the digitized signals avail  - 

able on punched ca rds .  These  ca rds  contain samples of the e r r o r  

and e r r o r  r a t e  ranging frorn0.125 before to 0, 025 seconds after  

the actual  pulse initiation. These  samples  may  be viewed as leading 

the pulse initiation by T seconds where  T va r i e s  between 0. 125 and 

-0.025 seconds in s teps  of 0.025 seconds. 

The resultant  f o rm  of the PDE takes the fo rm show-n in 

F igu re  5.5 where  

z *  
(5.3) 
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Figure  5. 5 Pulse  Amplitude PDE . 

There  were  a total of 142 pulse events in the digitized record .  Of 

these 75 were  positive control pulses and 67 w e r e  negative control  

pulses.  The space formed by e(t) ,  &(t )  and pi, the pulse amplitudes, 

was parti t ioned about the p = 0 plane and the identification procedure 

per formed separately on positive and negative operator  control 

actions. 

a s yrnmetry in operator  control actions. 

With this partit ion, i t  is possible to investigate possible 

A digital computer program w-as w-ritten to c a r r y  out the 

identification procedure for  PDE's derived in section 4.2. 1 and 

extended to  include time delay in sect ion 4.2.3. 
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The inputs to the p rogram were  the values of the input vector 

T seconds before pulse initiation, where the range of T was f rom 

125 mill iseconds before the pulse to 25 mill iseconds after the pulse, 

in s teps  of 25 milliseconds. 

amplitudes, pi, i = 1, 2, . . . N. 

tabulated in  Table 5. 1. 

Also supplied we re  the actual  pulse 

The computational results are 

TABLE 5.1 

As can be seen  f rom Table 5. 1, there  is a well  defined mini-  

m u m  value of the c r i te r ion  function @, as T is varied. A plot of the 

c r i te r ion  function, b ve r sus  T is found in F igure  5.6. A plot of the 

pulse amplitudes generated by the optimal models  ve r sus  the actual  

pulse amplitudes is found in F igure  5. 7. The points are quite c lose  

to  the ideal  unity slope line. The optimum values for positive and 
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J 
B 

negative pulses,  respectively are a = 2. 16, -1. 99 volts; a = -0. 062, 

-0.066; a = -0.125, :O. 143; and T =  0.050, 0. 100 seconds. The 

symmet ry  observed in these values cont ras ts  with the l a rge  differ-  

ences in the values of the optimum cr i te r ion  function fl 

fl 

0 1 

2 

= 0.492 and t 

= 0.217. In other words,  the positive pulses  produced poorer  - 

- 3  
1.05 . 4 x  10 

1 .3  x . 5  x 

corre la t ion  with the actual pulse amplitudes than did the negative 

pulses.  

negative pulse events a r e  closer  to the ideal line than the positive 

pulse events. 

fac tors :  

stick, incomplete training, o r  the tendency of the operator to prefer 

cer ta in  portions of the e r r o r  phase plane. 

This is a lso  seen  in the sca t te r  plot, F igure  5. 7, where the 

This may be a resul t  of one o r  m o r e  of the following 

arm motion asymmetry  associated with the s ide arm control 

In a recent  experiment  by Agarwal, [ 13 the effective inert ia ,  

spr ing  constant, and damping coefficient of the human operator  p e r -  

forming f o r e a r m  control  were  measured.  

experiment  a r e  tabulated in Table 5.2. 

The resul t s  of their 

TABLE 5.2 

I K 11 2.5 I 2.3 I 
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The asymmet ry  in these  resu l t s  tends to support  the assumption that  

the la rge  differences in the c r i te r ion  functions are a proper ty  of s ide 

arm control lers  result ing f rom the s t ruc tu re  of the opera tor ' s  

neur omus cular system.  

An analysis of the differences betw-een the human operator  

pulse amplitudes and the cor responding model pulse amplitudes 

s e r v e s  two purposes. The fidelity of the model  is tes ted and the 

distribution functions of the human operator variations may be 

determined.  

and their mean and s tandard deviation are found i n  Table 5 . 3 .  

These distribution functions a r e  found in F igure  5. 8 

TABLE 5 . 3  

The sample s ignal  c mus t  be generated by an MSDE. The 

t imes  at which the MSDE mus t  change s ta te  m a y  be computed f rom 

tiM = ti - 7 i (5.4) 

where  t. is the actual  t ime of the pulse initiation, T~ is the time 

delay appropria te  to the i 

the MSDE muet  change state.  

1 

th 
pulse event and t is the t ime at which 

iM 
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5.4.2 Pu l se  Width Model 

The pulse w-idth of a pulsati le event is easi ly  generated by a 

PDE. 

same control  s ignal  as the pulse amplitude PDE. Pre l iminary  . ~ 

It is assumed that the pulse width PDE is controlled by the 

analysis of the tracking r eco rds  led to the hypothesis that  the pulse 

width w-as proportional  to pulse amplitude. 

a par t icular ly  s imple  input vector 

This hypothesis leads  to 

x = 1  0 
(5.5) 

x = P A i  i = 1, 2, ... N. 1 

The resul tant  PDE is 

Pulse  
Width 

F igure  5. 9 Pu l se  Width PDE 

The pulse w-idth model  falls into the category of modeling 

situations discussed in  section 4.2.2. The input vector is of suffi- 

ciently low dimensionality, that the input-output relationship can be 

plotted. Such a plot is found in F igure  5. 1 0  where  the pulse width is 
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plotted against the pulse amplitude. 

shown with a s t ra ight  line. 

horizontal line a t  the mean  pulse width. 

are: a = 0. 711, 0. 316, a = -0. 021, -0. 049 for positive and nega- 

tive pulses  respectively. 

The PDE fits the event points 

The best  f i t  s t ra ight  line app2ars  to  a 

The computational r e su l t s  

0 1 

The coefficient associated with the pulse 

amplitude is small, indicating that the pulse w-idth is a lmost  inde- 

pendent of pulse amplitude. 

the actual  pulse w-idth is found in F igure  5. 11,. 

fur ther  evidence that the pulse width is not strongly dependent on 

pulse amplitude. 

the actual  pulse width and the model  pulse w-idth is found in F igure  

5. 12. 

are found in Table 5.4. 

A plot of the model  pulse w-idth v e r s u s  

These plots are 

The distribution functions of the difference between 

The mean and s tandard deviation of these distribution functions 

TABLE 5.4 
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5. 4. 3 The Complete Pu l s e  Amplitude - Pu l se  Width Model 

- 
If a binary control  signal,  e, is assumed, then the complete 

pulse amplitude - pulse width model  can be constructed as shown in 

F igure  5. 13. 

c 
4 - 7 5  

> e  

Pulse  
Width 

3. 
PULSE 

GENERATOR 

Sta r t  

Figure  5. 1 3  Pulse  Amplitude - Pu l se  Width Model 

The coefficients, a, and the t ime delay, T, depend on the 

polari ty of the pulse. Two a r rangements  are possible: determine 

average coefficients and an average t ime delay, o r  construct  two 

separate models. 
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- 
In the next section, the binary control  signal, c, will  be 

generated by an  MSDE. 

wil l  be e( t )  and &(t). 

shown in F igure  5. 13 contains an  input dependent sampler .  

The components of the MSDE's input vector 

Thus the pulse amplitude - pulse width model  

5. 4. 4 Pu l se  Initiation Model 

The over t  act of generating an  output is a measurable  event. 

The time at which the output event is initiated is easi ly obtained f r o m  

the tracking record,  show-n in Figure  5.2. The pulse initiation 

p rocess  is eas i ly  modeled by a binary MSDE, i. e . ,  an MSDE with an 

output w-hich is ei ther on o r  off. 

control  signal,  c, which operates  the pulse amplitude and pulse 

width sample  and hold devices, then the des i red  on t imes  for the N 

If th is  signal  is used as the binary 

- 

events m a y  be computed f rom:  

i =  1, 2,  ... N - 
i tiM - ti - (5.6) 

where  the t are the time at which the des i red  output of the MSDE, 

dt), becomes true,  t. are the actual times of initiation and T .  is the 

time delay obtained in section 5. 4. 1 where  7 

fo r  positive pulse events and 7 

pulse events. 

iM 

1 1 

= . 050 mill iseconds 
i 

= . 100 milliseconds for  negative i 

Although the above yields a decision element which generates  

the des i red  control  signal, it does not necessar i ly  reflect  the human 

, 
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opera tor ' s  behavior. 

made pr ior  to the decision to sample  and hold the input vector.  

possibility may be investigated by select ing a c r i te r ion  function for  

the MSDE adjustment algori thm that allows the time delay to  be com-  

puted. 

the input vector during a pulsatile event, and does not r e sume  

monitoring the input vector until the pulse output event is complete. 

This resu l t s  in the following procedure  for evaluating the MSDE 

cr i te r ion  function: 

tw-o possibil i t ies occurs- - the  MSDE generates  an  output, or  the actual  

t ime of a pulse initiation is exceeded. 

output, compute the t ime by w-hich the s ignal  leads  the next actual  

pulse initiation. Resume applying the input vector s tar t ing at the 

end of the pulse event. If the MSDE produces no output p r ior  to the 

actual  t ime of initiation, the event has  been missed.  A tally is kept 

of the total number of mi s se s .  Ideally, an MSDE will  be found such 

that an output is produced exactly T seconds p r io r  to the actual  time 

of initiation for  every  pulse event. If the MSDE is representat ive  of 

the opera tor ' s  behavior then this time delay wil l  be larger than o r  

equal to  the time delay associated with the sampling process .  

The decision to initiate the pulse might w-ell be 

This 

This may  be achieved by assuming that the operator ignores 

apply the time varying input vector until one of 

If the MSDE produces an 
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This  may be formulated by defining a cr i te r ion  function as 

follows: 

N -M 
2 

i =  [T - ( tim - ti 11 -I- KZM 

i= 1 

and 

N -M 1 
T = - J- (t - ti) N -M im (5 .7)  

i = l  

where  t. is the actual  time of pulse initiation, t 

which the MSDE output became t rue ,  and M is the number of mis sed  

is the t ime at 
1 im 

events.  

The t ime delay, T ,  is the mean lead t ime of the MSDE. The 

first t e r m  of the c r i t e r ion  function is jus t  the standard deviation of 

the lead t imes  (t - ti). im 

The results of the pulse amplitude model clearly demonstrate  

the ability of the human operator  to  es t imate  the derivative of a 

displayed signal. 

assumption that the decision to initiate a pulse is based on a relat ive-  

ly s imple decision sur face  in the e r r o r ,  e r r o r  r a t e  phase plane, 

number of e r r o r  phase plane t ra jec tor ies  w-ere sketched, Figure 5. 14 

The t ra jec tor ies  start (c i rc les)  at the termination of a pulse event and 

end ( c r o s s e s )  at the initiation of the next pulse. 

The MSDE input vector was selected with the 

A 

An  inspection of 

i 
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these  t ra jec tor ies  led to  the observation that  the human operator 

uti l izes the favorable e r r o r  rate in  the second and fourth quadrants 

and allows the sys tem to coast  until the magnitude of the e r r o r  is 

sufficiently small. If, at the time the e r r o r  rate is still large,  a 

new pulse event is initiated. A further observation is that an e r r o r ,  

e r r o r  rate dead zone exis ts  inside of which no pulse events are 

generated. 

experiments @a. 
This  is consistent  with other human operator tracking 

Based on the above analysis,  decision surfaces  i n  the e r r o r  

phase space we re  selected.  These surfaces  are shown in Figure  5.15. 

An MSDE is easi ly  constructed to real ize  these decisions 

surfaces .  There  a r e  two surfaces  described by 

and 

2 2 2 6 t e  = R  

6 + m e = O  

e = O  

(5.8) 

(5. 9 )  

where  R is the radius  of a ci rcular  dead zone and m is the slope of a 

line through the origin, as shown in F igure  5. €5. 
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Figure  5. 15 Decision Surfaces  Fo r  Pu l se  Initiation MSDE 

The input vector is 

x = 1  

x = e(t)  

x = d(t) 

0 

1 

2 
2 

x = e (t) 3 

4 
2 

x = d (t)  

(5.10) 

The resul tant  MSDE is shown in F igure  5. 16. 
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p_n=n -Pulse  

F igu re  5. 16 The Pu l se  Initiation MSDEZ 

The MSDE contains only two a rb i t r a ry  constants which m u s t  

be identified. 

in  section 4. 3, it was  decided to pe r fo rm a systemat ic  study of the 

admissible  values of R and m. 

parameters is sufficiently small, and their ranges  well  defined. 

Rather  than utilize the adjustment algorithm developed 

This  is feasible when the number of 
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The computational r e su l t s  a r e  seen  in F igure  5, 17. The 

optimum p a r a m e t e r  values a r e  R = 4.0 volts and m = - 1 . 4 3 .  

value of ndich resu l t s  f r o m  these pa ramete r  values is T = 0.200 

milliseconds. 

the distribution function of the t imes  the model  produced an output 

relat ive to the actual  t ime of initiation. 

F igure  5. 18. 

pulse initiation. 

the required 200 milliseconds. 

menta l  data,  as  there  are a number of Dulse events which a r e  

separa ted  by l e s s  than 200 milliseconds. A plot of the distribution 

function of the t imes  between pulse events is found in F igure  5. 19. 

Again, a peak is observed a t  100 milliseconds. Thus, if the model  

makes  a decision to initiate a pulse a t  the f i r s t  available instant,  

i. e. exactly at the completion of the pulse event in p rogress ,  the 

decision will  still be l e s s  than 200 mil l iseconds pr ior  to the actual  

initiation of the next pulse. Two mechanisms may  account for this 

resul t .  

vector some t ime  before the completion of the pulse. The second, 

and m o s t  likely is that the operator  had decided to generate two o r  

possibly m o r e  pulses before he initiated the first one. 

The 

The pulse initiation model  may  be studied by plotting 

Such a plot is found in  

A peak is observed a t  100 mil l iseconds before actual  

These  MSDE outputs do not lead the ac tual  event by 

This  is consistent  with the exper i-  

The f i r s t  is that the opera tor  r e s u m e s  monitoring of the input 
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The opera tor  generates  single pulses to achieve rate c o r r e c -  

tions and pulse sequences to achieve position correct ions.  

operator  models to r ep resen t  Dreprogrammed pulse sequences have 

been proposed by Bekey and Angel 

The inclusion of a Dreprogrammed pulse sequence generator r e p r e -  

sen t s  a logical and necessary  continuation of this  study. 

Human 

4 1 and Tomovic and McGhee 1421. 

The use of m o r e  complex decision sur faces  is c lear ly  indi- 

cated. These r e s u l t s  do, however, demonstrate  the applicability of 

the MSDE and the PDE to the modeling of d i sc re te  behavior in 

human opera tors .  

Since the decision to initiate the pulse event leads the decision 

to sample the inputs, i t  may be hypothesized that the initiation of an  

output pulse by the human operator  is a complex p rocess  which con- 

s i s t s  of seve ra l  phases as follow-s: 

(a)  Somew-here near  the completion of an output pulse, 

monitoring of e and 6 by a decision element  is 

r e s umed. 

When the e r r o r  t ra jec tory  en te r s  pre- selected 

regions of the phase plane, a decision to produce a 

(b)  

pulse is made 

Some t ime la ter  the input vector is sampled and the (c) 

amplitude and width computed. 

! 
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(d) Some t ime after  (c) the pulse is initiated. 

5. 5 The Complete Human Operator  Model 

The complete human operator  model  is shown in  Figure  5.20. 

An interest ing feature of the model is the input dependent sampling 

which takes  place in the pulse amplitude PDE. 

5. 6 Summary of Resul ts  and Conclusions 

The PDE and MSDE may  be used to contruct identifiable 

human opera tor  models  for d iscre te  control behavior. 

model  contains a completely identified input dependent sampling 

element.  

The resul tant  

The p a r a m e t e r s  of the human operator  model shown in  

F igure  5 .20  w e r e  obtained f r o m  experimental  data taken f r o m  one 

subject in an advanced s ta te  of training. 

the e r r o r  o r  m e a s u r e s  of the e r r o r  as a function of training, 

computational r e su l t s  brought to light a number of interest ing 

resu l t s  : 

N o  records  w e r e  made of 

The 

(1) The delay t ime 7 between the model 's  decision to 

pulse and the actual event was 200 milliseconds. 

The value is within the range of react ion times 

reported in  the l i t e ra tu re  
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(2) The numerical  values f o r  the t ime delays in F igure  

5. 20 lead to the following sequence: (1) A decision is 

made to generate  a pulse, followed by (2) a pause of 

100 - 150 milliseconds, (3)  e(t) and 6 (t) are sampled, 

(4) during the next 50-100 milliseconds the amplitude 

and width of the pulse are computed'and (5) the pulse 

is generated. 

The pulse amplitude and pulse w-idth models for nega- 

tive pulses  produce better correlat ions with the 

( 3 )  

experimental  data than the models for positive pulses. 

This  is c lear ly  apparent in the sca t te r  plot, F igure  

5. 7 and in  the values of the cr i te r ion  function, 

F igure  5.6. This  may  be the resul t  of incomplete 

training, the design of the s ide a r m  controller used, 

the position of the subject 's  arm relat ive to the 

controller o r  a charac ter i s t ic  of the part icular  human 

operator  in this experiment.  

Agarwal r 11 are cited in support of the hypothesis 

The resu l t s  of 

that this is a charac ter i s t ic  of s ide arm control lers .  

The pulse amplitude models for  positive and negative (4) 

pulses  a r e  qui te  similar, despite considerable asym- 

m e t r y  in pulse amplitude distributions, F igure  5. 4. 
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(5) The resu l t s  presented  in F igure  5. 19 strongly 

indicate that human opera tors  utilize some  pre- 

programmed pulse sequence s. 

( 6 )  If the differences between model r e s u l t s  and experi- 

menta l  tracking da ta  are viewed as the re su l t  of 

shor t  t e r m  human operator  variations, then the 

s t a t i s t i c s  of the human opera tor  variations a r e  

easi ly determined, tables  5.3 and 5.4.  

F r o m  the present  study it is not feasible  to determine 

w-hether the model e r r o r s  observed a r e  random o r  functionally 

depending on the human operator  inputs and input-output history. 

Fur the r  s tudies  should include preprogrammed pulse elements ,  

m o r e  complex e r r o r  phase plane decision surfaces ,  and the effects 

of training on the model p a r a m e t e r s  and their associated distribution 

functions. 



CHAPTER 6 

A MODEL FOR THE TRACKING BEHAVIOR O F  HUMAN OPERATORS 

USING MULTIPLE COORDINATED DISPLAYS 

6 . 1  Scanning Behavior Of Human Operators  

There  are many physical sy s t ems  in w-hich the opera to r ' s  

control  actions a r e  based on information obtained f rom tw-o o r  m o r e  

sources .  

excellent example of such a system. The information presented by 

the ins t ruments  is determinis t ic  and coordinated in that the s ta te  of 

the a i r c r a f t  can only be determined by reading a number of ins t ru-  

ments.  

The a i rc ra f t  instrument panel show-n in Figure  1 .  3 is an 

Models which descr ibe  the scanning behavior of human opera-  

t o r s  have been described in the l i tera ture .  

divided into th ree  groups. 

display devices presented uncorrelated signals. 

control  action consisted of monitoring the displays for l imit  condi- 

tions and actuating a button o r  sw-itch. 

axis control  tasks  in w-hich the displays are uncorrelated w-ith each 

other. Group I1 contains situations in w-hich the displays presented 

These  studies may  be 

Group I contains situations in w-hich the 

The opera to r ' s  

Group I also  contains mul t i-  

113 
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determinist ic ,  coordinated signals,  but the s ignal  t ime h is tor ies  

Were not utilized. 

presented  determinist ic ,  coordinated signals whose t ime h is tor ies  

w e r e  recorded simultaneously with the opera to r ' s  eye position. 

Group I11 contains situations in w-hich the displays 

Models for the scanning behavior of opera tors  in Group I and 

I1 situations have been presented [5,3q. 

described in the l i te ra ture ,  the behavior modeled is the distribution 

function of the fixation t imes  for each instrument,  and the distribution 

function of the various inter - instrument  transitions. The resul tant  

scanning model depends on the long t e r m  proper t ies  of the displayed 

signals;  signal mean and higher moments,  o r  bandw-idth. The 

instantaneous signals viewed by the operator  a r e  not utilized. 

In a l l  of the investigations 

Models for  Group I11 situations have not been published to the 

present  t ime; the purpose of this chapter is to synthesize a de te r-  

minist ic  model for  an opera tor ' s  scanning behavior in a Group I11 

experiment.  The control t a sk  described in the preceding chapter 

was  the pitch axis of an  aircraf t .  

display w-hich presented altitude e r r o r  and operated a control s t ick 

which positioned the a i r c r a f t ' s  elevator.  

may be viewed as an  ILS/Glide Slope Needle o r  simply a high-low 

indicator in a t e r r a i n  avoidance system. 

The operator  viewed a single 

The altitude e r r o r  display 

If a second display is adkled, 
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w-hich presents  the a i r c r a f t ' s  pitch attitude, the control sys tem 

becomes a Group 111 t a sk  if  both displayed signals  and the opera to r ' s  

eye position a r e  recorded. 

This  chapter p resen t s  the r e s u l t s  of such an experiment.  A 

Dis-  complete human operator  model  is synthesized and identified. 

c r e t e  decision elements ,  operating on the displayed signals,  a r e  

utilized to model the scanning behavior of the operator .  

6 .2  The Tracking Task  

The tracking task  consis ts  of maintaining an a i rc ra f t  a t  a 

constant altitude while flying over r a the r  bumpy ter ra in .  

to the operator  a r e  a i r c ra f t  attitude (pitch angle) and altitude e r r o r .  

The opera to r ' s  output is elevator position. 

control  sys tem is found in Figure 6. 1 

The inputs 

A block diagram of the 

The operator  mus t  scan o r  commutate between the two d i s -  

plays in o rde r  to operate  the system. 

r e f e r r e d  to as the L E F T  display (attitude) and the RIGHT display 

(altitude e r r o r ) .  

The two displays w-ill be 

T e r r a i n  avoidance and ILSINAV sys tems  utilized similar 

pitch axis displays. A t e r ra in  avoidance task may be performed a t  

constant throttle,  w-hile ILS climbs and descents  depend heavily on 

throttle control. Thus, a t e r ra in  avoidance t a sk  w-as utilized. 



Figure  6. 1 The Tracking Task  

The operator  w-as instructed to keep the instantaneous e r r o r  

a s  small as possible w-ithout allowing the pitch angle to exceed 

t 40 degrees.  - 

6. 3 The Experiment  

The t ransfer  functions for the pitch axis and the vehicle 

altitude w-ere selected so  that the operator  produced pulsatile control  

actions. The t ransfer  functions w-ere: 

P i tch  angle (degrees)  - 2 - 
Stick Otuput (volts) s ( s  t 2) 

50 Altitude (feet) - ~ 

Pi tch  angle (degrees)  
s ( s 2  t 10s t 100) 
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The display gains were:  

Pi tch  attitude: 

Altitude e r r o r :  

10 degree /cm of ver t ica l  displacement 

100 fee t / cm of ver t ica l  displacement 

The s t ick  gain was: 

3 volts/  degree of rotation 

The tracking stat ion is shown in F igure  6. 2 

The operator sat in a long range t ranspor t  pilot 's chair ,  

which could be adjusted vertically to suit the operator.  

controller  was a lso  adjustable and contained an integral  arm r e s t ,  

The s i dea rm 

Frequency response  problems associated with actual a i r  craf t  ins t ru-  

ments  w-ere avoided by utilizing oscilloscopes with specially prepared 

edge lighted re t ic les .  

F igure  6. 3 .  

The oscilloscope displays are seen in 

The t ransfer  functions w-ere mechanized on an analog compu- 

t e r ,  Seven signals available at  the analog computer we re  recorded 

on F M  magnetic tape: 

1. the opera to r ' s  eye position 

2. s t ick  position 

3 .  pitch angle, e(t) 

4. pitch ra te ,  eo(t) 

5. altitude e r r o r ,  e( t )  

6. altitude e r r o r  rate, e (t) 

\ 

0 
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a. Display Configuration 

b. Pi lo t ' s  Seat and Sidearm Controller 

FIGURE 6. 2 - Tracking Station 



a. RIGHT Display Reticle 

b. L E F T  Display Reticle 
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FIGURE 6. 3 - Illuminated Displays 
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The input to the sys tem w-as obtained by fi l tering low- frequency 

gaussain noise. The fi l ter  t r ans fe r  function w-as: 

lOOK 
3 F(s)  = 

(s  t 1) (s t a) 
( 6 . 3 )  

The nominal values of K and a Miere 30 and 10 respectively. 

The values of K and a w-ere adjusted to control  the difficulty of the 

task. 

A single subject received approximately 30 hours  of training 

over a period of three  weeks. The training sess ions  consisted of 

six minutes of tracking and five minutes of r e s t .  

sess ions  w-as recorded on magnetic tape and subsequently digitized. 

The sampling in terval  was 25 mil l iseconds o r  40 samples  per  second. 

One of the last 

6. 4 Measurement  of Eye Posit ion F r o m  Elect ro-ocular  Potentials  

According to Young 521 , Schott [55] demonstrated a rela- 

tionship betw-een eye motion and per iorbi ta l  potential variat ions as 

ea r ly  as 1922. 

placing e lect rodes  on the skin around the eye, potential differences 

could be measured  between electrodes w-hich resul ted  f r o m  eye 

motions in the plane formed by the two e lect rodes  and the eye ' s  

center  of rotation. 

ocular  potentials, 

Mowrer,  Ruch, and Miller  [ 561 found that  by 

These  potentials are often r e f e r r ed  to as e lec t ro -  
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The potential changes due to eye motion a r e  approximately 

20 microvol ts  per  degree  of rotation. 

ampl i f iers  have only recently reached the point w-here these poten- 

tials a r e  easi ly measured.  IfaLpair .of elect rodes  are placed la tera l ly  

on ei ther side of the eye, then the potential difference between them 

m a y  be used to determine lateral eye position. 

be increased by placing lateral e lect rodes  near  both eyes and connect- 

ing them in  s e r i e s .  

may  be obtained by eliminating the two middle electrodes.  

resul tant  electrode placement may be seen in Figure  6. 4 

The gain and stability of D. C. 

This potential may 

A reduction in the number of electrodes required 

The 

The left and r ight  e lect rodes  were  connected to the differen- 

t ial  inputs of a high gain, high common mode rejection amplif ier ,  

The center  electrode w-as connected to the guard or  common input. 

The amplif ier  contained a variable bandwidth low pass  f i l ter .  The 

filter cutoff was  s e t  to 10 cps to eliminate 60 cps noise pickup. 

The sys tem w-as cal ibrated by asking the subject to look a t  a 

spot midw-ay between the two displays. 

used to ze ro  the amplif ier  output. 

30 degrees  of eye motion produced an output of approximatley 2 volts. 

Some subjects  electro-ocular  potentials contained a small D. C. 

level  in addition to the eye motion potentials. 

The amplifier offset was 

With an amplifier gain of 2500, 

If the amplifier is to 
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FIGURE 6.4 

Subject Showing Location of Biopotential 

Skin electrodes For Eye Motion Measurements  
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be kept out of overload, the gain mus t  be reduced, This  reduces  the 

signal  to noise ra t io  a-nd makes  i t  difficult to detect  the eye motions. 

When this becomes troublesome the c i rcui t  shown in F igure  

6 .  5 w-as used in s e r i e s  with one of the electrodes.  

1.4 V. Mercury Bat tery  

F igure  6. 5 D. C. Potential  Correct ion Circui t  

The polarity of the correct ion is r eve r sed  by revers ing  the 

bat tery  in i t s  holder,  

i n su re  that the amplifier output is within i t s  specified voltage range. 

The potentiometer is adjusted periodically to 

The electro-ocular  potential was used to determine which of 

the two displays the subject was viewing. 

motion record  is shown in F igure  6.6.  

f igure,  no difficulty:% encountered in’determining which display is 

being viewed. Fo r  this reason,  no at tempts were  made to accurate ly  

cal ibra te  the sys tem o r  to el iminate slow- D. C. drifts.  

A portion of a typical eye 

A s  can be seen f rom this 



Figure  6 .6  Typical Eye Motion Record 

6. 5 The Experimental  Data 

A s  described previously, a single subject received approxi-  

mately 30 hours  of training. 

sess ions  w-as selected for detailed study. 

was  digitized by sampling all seven recorded channels every  25 

millis e c onds. 

One of the l as t  s ix  minute tracking 

The FM tape recording 

Digital computer  p rograms  were  writ ten to co r r ec t  for z e r o  

offset and gain e r r o r s  introduced by the F M  recording process .  

These  correct ions  we re  computed f r o m  the ze ro  and - t 100 volt 

cal ibrat ion signals recorded a t  the end of the run. 
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The digitized r eco rd  contained the t ime his tor ies  of the 

follow-ing signals: 

1. eye motion 

2. s t ick  motion 

3.  pitch angle 8(t) 

4. pitch r a t e  0 ( t )  

5. altitude e r r o r  e( t )  

6. altitude e r r o r  r a t e  k(t) 

7. altitude command input 

A typical portion of the tracking r eco rd  is s een  i n  F igu re  6. 7. 

s t a r t  of the run w-as located on both the digitized record  and s t r i p  

The 

c h a r t  recording.  A l l  t ime measurements  w e r e  made  re la t ive  to  

the start of the session.  

The t ransient  eye motion data  was converted to integer digits 

as shown in F igure  6.8. 

The oDerator is assumed to be view-ing the L E F T  display when 

the code digit is 6 ,  1 or 2, and the RIGHT display when the code 

digit is 3 ,  4 o r  5. A total of 216 eye motion cycles  left to right and 

back again were  located in the digitized record.  

The t ime  his tory of the s t ick  motion w-as examined. A s  c a n  

be s een  f rom F igu re  6. 7, i t  is strongly pulsatile. The stick 
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EYE MOTION 

p8VOLTS P - 4  

STICK 

DISPLACEMENT 

(VOLTS) 

PITCH ANGLE 

(DEGREES) 

t100- 

PITCH RATE 

(DEGREESISECOND) 0- 

-100- 

ALTITUDE ERROR 
(FEET) 

ALTITUDE ERROR 

RATE 

(FEETISECOND) 

INPUT 

(VOLTS) 

FIGURE 67. TYPICAL TRACKING RECORD 
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RIGHT 

E y e  
Motion 

LEF’I 

INTEGER 
CODE 4 5 6  1 2 3  4 5 6  1 

Figure  6. 8 Discretization of Eye Motion Data 

motions were  idealized as tr iangular shaped pulses,  as shown in 

F igure  5 .2  of the nreceding chapter. 

t ime  of nulse termination, and the amplitude of the pulse w e r e  

The time of the pulse initiation, 

recorded.  If a pulse w-as Dart of a sequence of pulses ,  the z e r o  

cross ing Doint w-as used to es t imate  the initiation and termination 

times. 
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6 . 6  The Proposed Model 

The only difference between the experiment described above 

and the experiment of the previous chapter is the scanning behavior 

of the operator .  

the model  will be identical to that of the previous chapter. 

Since the opera to r ' s  outputs a r e  oulsatile,  much of 

There  

a r e ,  however, tw-ice as many signals available to the operator .  The 

task  of modeling the resul tant  behavior is considerable as the 

dimensionality of the signal space renders  intuitive and graphical 

aids use less .  

re l ied  upon. 

Instead systematic modeling procedures must be 

The ability of opera tors  to es t imate  r a t e s  of change of d i s -  

played var iables  is well  established. 

direct ly a t  a display, the signal and signal r a t e  a r e  assumed to be 

available continuously. If d i rec t  o r  foveal vision is assumed to be 

the only source  of input to the operator ,  then signals in the periphery 

are  not available. 

play to the other ,  i t  may  be assumed that the l a s t  observed values of 

the s ignal  and signal r a t e  are stored.  

f lects  this  descript ion is found in  Figure  6. 9. 

Thus, w-hen the oDerator looks 

When the ooerator  moves h i s  eyes f r o m  one d is-  

A scanning model  w-hich r e -  

The element w-hich models the opera to r ' s  decision to switch 

displays is hyDothesized to be an MSDE. 
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t 

1 

Sample 
and 

Hold 

A - + d  - 
dt 

I 

DISPLAY ED OPERATOR 
VARIABLES INPUTS 

r 
Figure  6. 9 Scanning And Signal Process ing  System 

The remaining portion of the operator  model shown in  

F igu re  6. 10, follow-s f rom the r e su l t s  of the previous chapter. 
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Operator  
InDut 

Pu l se  
Amplitude 

(PDE) 

Pulse  
Generator 

Pu lse  Initiation 

t r t  I 

Human 
Operator 

F igure  6. 10 Proposed Human Operator Model 

6. 6. 1 Comments On The "Operator Input" 

The "operator input" as defined above consis ts  of tw-o con- 

tinuous signals and tw-o discre te ,  sampled and held signals. The re  

are, consequently, a t  l eas t  four inputs to the decision e lements  used 

to synthesize the model. The input vectors  to each element will 

contain a t  l e a s t  5 components. The decision space will be a t  l eas t  

i 
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six dimensional. This  makes  i t  a lmos t  impossible to se lect  reason-  

able decision sur faces  f rom a p r io r i  knowledge of the system.  

possibility that the operator  ut i l izes th ree  dimensional decision 

The 

sur faces  and f o r m s  m o r e  complex sur faces  by combining them is 

investigated below. 

6. 7 Identification Of The Pu l se  Modulation Model 

The control  actions of the operator  w e r e  idealized above as 

tr iangular pulse events. 

a pulse amplitude and d pulse width. 

will be investigated below. 

c lear ly  demonstra te  the applicability of P D E ' s  to the modeling of the 

ope ra to r ' s  decision as to the amplitude and width of the pulse to be 

generated. 

the operator  from utilizing both displayed s ignals  continuously. 

output of the opera tor ' s  scanning and signal processing system,  

shown above in F igure  6. 9, can be computed from the eye position 

record.  The resul tant  signals a re  called the Operator  Input. The 

Each  event consisted of a t ime  of initiation, 

The validity of this  idealization 

The r e su l t s  of the previous chapter 

The physical  separat ion of the display devices prevents  

The 

PDE input vectors  will be derived f rom these  signals. 

The PDE produces a s ca l a r  voltage, the magnitude of which 

A binary signal  controls 

The identification procedure 

de te rmines  the pulse amplitude or  width. 

the sampling and computation process .  
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determines  this timing signal  relat ive to actual t ime of initiation of 

the pulse. Another decision element,  described below-, models the 

opera to r ' s  decision to initiate a pulse event. 

element alw-ays leads the actual t ime of initiation by a known time. 

The timing of both decision elements is identified relative to the 

actual  pulse initiation. 

The output of this  

By algebraic manipulations, all of the control signals can be 

defined relat ive to the output of the pulse initiation decision element.  

The input vector utilized for both the pulse amplitude and the 

pulse width PDE ' s  was : 

x = 1.0 
0 

. L  

x 8 = e ( t .  1 - T) 

- 7)b  (t  - 7 ) /  100 = e(t.  - 7)  x = O(ti 
1 1 1 Y 

x = e(t.  - 7) 
2 1 

x = e(t i  - 't) 

x = &(t - 7 )  

3 

4 1 

2 
x = ( t  - 7 )  

' 2  
x = 8 (t  - 7 )  

5 1 

6 1 

x = 8( t  - 7)e(t - 7)/100 
10 1 1 

x = U(t - 7 ) k ( t  - 7) /100  
11 1 1 

x 12 = Wi - T)e(t .  1 - ~ ) / i o o  

x = 8(ti - T ) &  1 -7 ) /100  
13 

x = e(tl - 7 )&( t  - ~ ) / 1 0 0  
14 1 

(6.4) 

where  T is a lead time 

t . 
relat ive to the t ime of actual pulse initiation, 

Fur the r ,  the s ignals  shown are not the actual displayed 
1 

i 
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variables ,  but the Operator  Inputs produced by the scanning and 

signal  processing sys tem shown in  Figure 6 . 9 .  

The components of the input vector f o r m  a four dimensional 

quadrat ic  sur face  in the space  iormed by IJ, 8 ,  e ,  6 and the pulse 

amplitude or width. 

6. 7. 1 Computational Resul ts  

The identification procedure of chapter 4 w-as used to identify 

the coefficients of the P D E ' s  and the associated time delay. A s  in  

the previous chapter,  the event space  was partitioned by modeling 

the positive pulses  separately f rom the negative pulses. 

tational results a r e  seen  in F igures  6. 11-6. 14 where the cr i te r ion  

function is plotted against  the mean lead time, T . 

The compu- 

Three  of the four curves,  F igures  6. 11, 6.12, and 6. 14 

show- s t rong minimums m o r e  than 5UO milliseconds af ter  the actual  

pulse initiation. 

Thus it is possible that the operator  se lec t s  the amplitude and width 

while the pulse is being generated, A model  which would ref lect  this  

type of behavior w-ould r equ i re  a preview- model  to determine in w-hat 

direct ion and a t  what r a t e  to move the control s t ick in advance of the 

decision as to the final amplitude and width. 

The mean  pulse width is approximately 1.4 seconds. 

A model  of this type 
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could be constructed by utilizing four P D E ' s  two for preview- and 

two for  p r ec i s e  control.  

TABLE 6 . 1  

Optimal Coefficient Values F o r  The 
Pu lse  Amplitude and Pu l se  Width Models 

Coefficient 
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In all four curves ,  there  a r e  minimums near  the actual  pulse 

initiation (7 =O). 

occuring well after the pulse initiation a s imple r  model  is obtained. 

These  resu l t s  a r e  summar ized  in Table 6.2.  

If these minimums a r e  selected ra ther  than the ones 

TABLE 6 . 2  

The optimal PDE coefficient vectors  a r e  shown in Table 6. 1. 

The effectiveness of the models m a y  be s een  f rom the plats  of model  

output ve rsus  the actual  event magnitude, F igures  6. 15-6. 17. 

in the previous chapter ,  the positive pulse amplitude model  

cor re la tes  better  with the experimental  data than does the negative 

pulse amplitude model. 

157 for the positive and negative pulses respectively.  

hypothesized in  section 5. 4. 1 that this a symmet ry  resul ted  f r o m  the 

use of separa te  musc le  groups for the two directions of hand motion. 

As 

The c r i t e r ion  function had values of 59 and 

It w-as 
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The pulse width sca t te r  plots, F igures  6. 16 and 6. 17 a r e  a l so  

asymmet r ic ,  the c r i t e r ion  function values a r e  157 and 111 for  posi-  

tive and negative pulse events respectively. This  is jus t  the r e v e r s e  

of the pulse amplitude model  resul ts .  Fu r the r  study is required to 

evaluate this phenomena. 

The negative pulse amplitude PDE and the positive pulse 

width PDE sample the Operator Input 75 miil iseconds af ter  the pulse 

is initiated. 

This resu l t s  in a m o r e  complex model  than is des i red  here ,  

as another s e t  of decision e lements  mus t  determine in what direction 

the control  action is to  be s tar ted.  

achieved by causing a l l  of the P D E ' s  to sample  50 mill iseconds 

p r io r  to the pulse initiation. 

depends on the goals of the study. 

sion elements to  model  d i sc re te  human operator  behavior. 

A compromise  might be 

Whether the compromise  is necessa ry  

The goal h e r e  is to utilize deci-  

Ei ther  

type of model  could be constructed. 

6. 8 Pu lse  Initiation Model 

It was hypothesized that the decision to initiate a pulse 

occured when the event t ra jectory  c ro s sed  a decision sur face  in the 

space  formed by e, 6,  8 ,  tl. This is eas i ly  modeled by an MSDE. 
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In Chapter 5 an  MSDE was used to model the decision to  i n i -  

t iate  a pulse,  

components of the input vector w-ere based on an  inspection of typical 

phase plane t ra jec tor ies .  

precludes the use  of graphical o r  intuitive methods for selecting the 

The s t ruc tu re  of the MSDE and the selection of the 

The dimensionality of the task at hand 

shape o r  even the  approximate s tar t ing positions of the decision 

sur faces  . 

The MSDE m u s t  locate regions of the phase space w-hich a r e  

associated w-ith pulse initiations. 

derived f rom the Operator Input t ime his tory w-hich is generated by 

the scanning and signal  processing sys tem shown in Figure 6.9. 

The MSDE's input vector is 

The MSDE actually makes  two decisions. The f i r s t  is the 

decision to initiate a pulsatile control action, the second is the se lec-  

tion of a pulse polarity. 

positive pulse events and the other to initiate negative pulse events. 

Two MSDE's can be used, one to initiate 

It is possible to add m o r e  decision elements  to initiate p re-  

programmed pulse sequences. 

The MSDE described below- w-as identified using the t ime 

his tory of the Operator  Input pr ior  to negative pulse events. 

plete study w-ould r equ i re  the identification of another MSDE for 

positive pulse events. Only one of the MSDE's is identified he re ,  and 

it is assumed that the other could be identified by the same  p rocedure  

A com-  
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6. 8. 1 An MSDE P u l s e  Initiation Model 

An MSDE containing three  hyperplanes is shown in F igure  

6. 18. 

Operator 
Input 

F igure  6.18 Pu l se  Initiation MSDE 
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If the MSDE models  the opera to r ' s  cover t  decision, then i t s  

output should lead the actual  t ime of initiation. The variation of the 

lead t imes  should be a minimum. 

N -M - 
1 

i = l  
AVE N-M 7 

This formalized by defining 

(ti - tmil (6 .5)  

cyhere t. and t 

model  output respect ively,  N is the total number of pulse events 

are the times of the actual  pulse initiation and the 
1 mi 

studied. If no output is produced before the ac tual  pulse initiation is 

reached,  the pulse has  been m i s s e d  and M is the total number of such 

pulses. The c r i t e r ion  function is: 

N -M 

The second t e r m  is the variance of the lead t imes.  

value of Ib is obtained for part icular  values of the MSDE's coefficient 

A numerica l  

vector ,  a, by applying the success ive  samples  of the input vector to 

the MSDE until one of two things occurs.  

an  output, i n  w-hich c a s e  t is recorded,  o r  the time of the ac tual  
In i 

initiation is reached in which case  M is incremented. 

Ei ther  the MSDE genera tes  

The t r ans ien t  

input vector is not scanned continuously. A s  soon a s  the MSDE 

genera tes  an output, the scanning is stopped and resumed a t  the end 

of the pulse event being studied. 
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The procedure  is summar ized  in F igure  6.19. 

t t 
mi t l  i t 1  

I 

t- 

Figure  6. 19 Scanning Procedure  Fo r  MSDE Identification 

Approximately 20% of the pulses w-ere separated by less than 

200 milliseconds. 

p r io r  to the actual  t ime of initiation. 

chapter indicate that these  pulses a r e  probably par t  of pr.e’-. 

programmed sequences. 

t imes  of initiation and the number of pulses in the sequence is too 

complex to be considered here .  The development of such models  

r ep re sen t s  a necessa ry  extension of this work. 

In those ca se s  scanning was  begun 30 samples  

The r e su l t s  of the preceding 

A decision element w-hich models both 

6.8.2 On The Decoder 

In  Chapter 5, the s t ruc ture  of the pulse initiation MSDE, 

including the decoder,  was determined f rom a p r io r i  know-ledge which 
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w-as summar ized  in F igure  5. 15. 

an  n out of N binary element is used. 

the best  value of n beforehand, consequently systemat ic  s ea rch  is 

Since this is not possible here ,  

It  is not possible to  determine 

used. 

Some intuitive feel for the effect of n on the resul tant  decision 

space generated by the MSDE may be obtained by considering a two 

input, tw-o decision sur face  MSDE. In F igure  6. 20a, two decision 

sur faces  a r e  show-n, N=2. If n= l  out of 2, the MSDE produces an 

output when the event t ra jectory is above ei ther of the decision s u r -  

faces, as shown by the shaded area in F igure  6.20b. 

the MSDE produces an output w-hen the event t ra jectory is above 

both surfaces ,  as shown by the shaded region in Figure  6 . 2 0 ~ .  

If n=2 out of 2, 

The  choice of the parameter n has  a major  effect on the 

resul tant  decision volumes mechanized by the MSDE. 

6. 8. 3 Computational Resul ts  

Start ing values for the coefficient vector,  a, w-ere obtained 

by test ing 1000 s e t s  of 15 uniformly distributed random numbers  

between -1 and t1 .  Those yielding the lowest cr i ter ion function 

w e r e  used as s tar t ing values for the adjustment algorithm. 
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decision 
sur faces  

n = 2  

~ 

b) n t 1 (OR gate) c) n = 2 (AND gate) 

F igure  6 .20  Effect Of The Decoder P a r a m e t e r ,  n 

, K and K appearing in  the 
K1 2 3 The weighting factors ,  

c r i t e r ion  function, equation 6.6, w e r e  se lected such that all t h r ee  

terms contributed equally to i t s  magnitude. 
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The computational r e su l t s  are summar ized  in Table 6. 3. 

TABLE 6 . 3  

::: 1400 sets of random coefficients produced no acceptable s tar t ing 
conditions. 

A s  seen  in Table 6. 3,  optimal r e su l t s  a re  obtained for  n=2. 

Except for small differences in the lead t ime and variance,  the 

r e su l t s  are a lmos t  identical. The lead time distribution functions 

a re  plotted in  F igure  6.21. 

functions 30 samples p r io r  to  the actual  pulse initiation. 

su l t s  f r o m  art if icial ly extending the Operator  Input r eco rds  of 

A l a rge  peak is observed in all t h r ee  

This  r e -  

pulses  spaced less than 200 mill iseconds apar t .  

element produces an output as soon as scanning is resumed,  on the 

first sample of these 30 sample sequences. 

The decision 

This  is a fur ther  



151 

20 

10 

0 
0 .0  0 . 4  0 .8  1 .2  1.6 2 . 0  

Lead T ime ,  T (seconds) 1 

I -  - 1 -  I 
0 . 0  0.4 0 .8  1.2 1 .6  2 .0  

Lead Time,  7 (seconds) 

iC) 

w 
w 
0 

t 1  
E 
P 

0 L4L 
0 .0  0.4 

Estimated Mean Lead Time 
F o r  Single Pulse  Events 

0.8 1.2 1. 6 2.0 
Lead Time,  T (seconds) 

FIGURE 6.21 - Distribution Functions of Lead T imes  
For  Three  MSDE's 
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argument that these pulses a r e  par t  of preprogrammed pulse 

sequences. These  pulses may  be  removed f rom consideration by 

interpolating between adjacent data points, as shown by the dotted 

l ines in F igure  6.21. Although all three  models exhibit similar 

c r i t e r ion  functions, the distribution function of Figure  6 . 2 1 ~  best  

approximates a normal  distribution about a mean lead t ime of 20 

samples.  The final model  does not accurately represen t  closely 

spaced pulse events. 

r ep re sen t  these pulses . 
Additional decision elements a r e  required to 

The resul tant  negative pulse initiation MSDE leads the actual  

initiation of the pulse event by 500 milliseconds. 

tially longer than the lead t ime found in the single display exper i-  

ment  of Chapter 5, of 200 milliseconds. 

inc reased  complexity of the control task  o r  the need for scanning 

betw-een display devices. 

This is substan- 

This may resul t  f r om the 

Attempts w-ere made to add a fourth hyperplane to a part ial ly 

N o  improvement over the resu l t s  described above identified MSDE. 

we re  obtained. 

6. 8.4 A Logical Pu l s e  Initiation Model 

Although the r e su l t s  above are technically satisfying, they do 

not yield a g rea t  deal  of insight into the opera to r ' s  menta lp rocesses .  

J 
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It is difficult to obtain a geometr ic  interpretat ion of six dimensional 

surf  aces  . 

A m o r e  intuitive approach is based on the hypothesis that the 

opera tor  makes  separa te  decisions in the two dimensional spaces  

(tl , 6 )  and (e, 6) .  

Figure  6.22.  

An MSDE is eas i ly  constructed, as shown in 

The input vectors  are formed f r o m  the Operator  Input 

F igure  6,22 Logical MSDE 
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The advantage in this  s t ruc ture  is that the decision sur faces  

become l ines  on a two dimensional phase plane. 

Start ing conditions fo r  the adjustment algori thm were  

obtained by random search.  The computational resu l t s  are 

summar ized  in  Table 6.4. 

TABLE 6.4 

Summary of Computation Resul ts  Using Logical MSDE Model 

Number of Variance of 

The bes t  set of coefficients a r e  those obtained f rom the f i r s t  

c a se  in Table 6. 4. 

equations for the decision surfaces  can be writ ten 

Using the coefficients f rom this case ,  the 
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= 0.710 - 1.OU + 7 .0  
y1 

Y2 

y3 

= 0.318 + 0.436 t 11.0 

= 0.41e t 0.376 + 20 .5  

= 0.08e t 0.926 - 10.0 
y4 

(6.7) 

LO i f  y o - 

The output of the MSDE is defined by 

The decision sur faces  are  easi ly  drawn f r o m  these equations, 

and are  shown in  F igure  6.23. 

The comparison between the results obtained with the 

or iginal  MSDE and those obtained using the logical MSDE are shown 

i n  Table 6, 5. 

TABLE 6.5 

Comparison of B e s t  MSDE Resul t s  
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\ 
FIGURE 6 . 2 3  - Logical MSDE Decision Surfaces 
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The values of T a r e  not, in  themselves, significant. The 

original  MSDE m i s s e d  2 pulses l e s s  and produced a smal le r  v a r i -  

ance about the lead t ime than did the logical MSDE. 

The advantages of the Logical MSDE may  overshadow- the 

differences i n  resul t s .  The original MSDE was  constructed w-ithout 

using a p r i o r i  knowledge, and required  the identification of 15 p a r a -  

m e t e r s .  

placing s e v e r e  res t ra in t s  on the c lass  of decision surfaces  that could 

be investigated. 

The Logical MSDE contained only 12 pa ramete r s ,  while 

In this example, the resu l t s  indicate that the r e -  

s t r ic t ions  do no significantly affect the modeling of the human opera-  

t o r ' s  pulse initiation behavior. 

tor  behavior allows the investigator to add dead zones to the phase 

planes and, in general ,  extend the models.  The original MSDE is 

Fur the r ,  know-ledge of human opera-  

not easi ly extended. 

6. 9 Eye Motion Decision Model 

The control  task  selected was such that  the opera tor  required  

information f r o m  both displays in o rde r  to  opera te  the control  s y s t e m  

Since the two displays w-ere w-ell separa ted  the operated commutated 

between them. 

The commutation consisted of rapid motion betw-een and fixa- 

tions on the displays. The eye motion t ime history may  be broken 
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up into four phases: 

1)  view-ing le f t  display 

2)  view-ing r ight  display 

3) moving f r o m  left to  r ight  

4) moving f r o m  right to left 

The eye motion t ime history was examined and the t ime 

(relat ive to the s t a r t  of the run) of the beginning of each phase was 

determined. In all, 216 eye motion cycles,  f r o m  left to right and 

back again, w-ere recorded.  The distribution functions of the lengths 

of the four phases a r e  shown in F igure  6.24-6.26. 

f igures  i t  can be seen  that the left fixation intervals  and right fixation 

intervals  have similar shapes,  with means  ofapproximately 600 

F r o m  these 

milliseconds. The transi t ion phases a r e  quite similar, wi thmeans  

of approximately 125 milliseconds. 

6.9.  1 A n  MSDE Model 

The decision to initiate an  eye transi t ion is assumed to be 

based on determinis t ic  m e a s u r e s  of the input available to the opera-  

tor .  

in  the opera to r ' s  input space, then an MSDE may  be used to model  

the decision process .  

tion of the pulse initiation model a r e  a lso  suitable for this situation. 

If the determinist ic  m e a s u r e s  take the f o r m  of decision surfaces  

The techniques described above for  identifica- 

I 
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A thousand s e t s  of 15 random coefficients were  generated and 

tested in a three hyperplane MSDE. 

as initial  values in the adjustment algorithm. 

The twenty bes t  s e t s  w-ere used 

In all cases ,  the resul tant  MSDE produced 80% o r  m o r e  of i t s  

outputs on the f i r s t  sample  af ter  scanning was  resumed.  A typical 

MSDE produced no m i s s e d  eye motion events,  a mean lead t ime of 

24 samples  o r  600 milliseconds, and a variance of 96. The small 

number of missed  events and the small variance is of l i t t le conse-  

quence if  all of the model  outputs a r e  produced on the f i r s t  sample 

after  scanning is resumed.  

6. 9 .2  A PDE Model 

The length of t ime the operator  fixated on a display varied 

f r o m  a minimum of 100 mil l iseconds to m o r e  than three  seconds. 

If the onerator  computes the length of t ime to be spent viewing the 

next display, ra thec  than waiting until a decision surface  is crossed,  

a PDE model  may  be constructed. 

The PDE model  assumed that once a transi t ion is begun, the 

opera tor  computes the fixation in terval  as eye motion towards the 

display is initiated. 

t ransi t ion is initiated and a new fixation in terval  computed. 

As soon as the t ime in terval  is exceeded, a 

Samples 

of the opera tor ' s  input were  obtained s tar t ing  midway in  the eye 
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t ransi t ion and proceeding for  nine m o r e  samples.  The PDE model 

takes the form:  

f .  = a 'x( t .  t T )  (6. 10) 1 1 

where  f. is the length of the i th eye fixation, t.  is the t ime a t  w-hich 
1 1 

the fixation began, a is a vector of unknown coefficients and I- is a 

t ime delay to be determined. 

The f i r s t  input vector corresponded to a four dimensional 

power se r i e s :  x = 1 . 0  
0 

x = O(t. t T) 

x2 = O(t. t I-) 

1 1 

1 

x = e(t i  + 7 )  3 

4 1 
2 

5 
2 

x = &(t. t 7 )  

' 0.01 

. 0 . 0 1  

1 

x6 = x2 

x = x  

2 
f 0 .01  

2 
x = x  . 0 . 0 1  

= x  x ' 0.01 

x = x  x 0.01 

x = x  x * 0.01 

x = x x  0.01 

x = x  x - 0.01 

Xi4 = x3x4 0.01 

3 7 

8 4 

x = x  

x9 1 2  

10 1 3 '  

11 1 4 

12 2 3 

13 2 4 

( 6 .  1 1 )  
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F o r  fixed values of 7 ,  the optimal coefficient vector,  a, and 

the resul tant  value of the c r i t e r ion  function w-ere computed by the 

procedure descr ibed above in Chapter 4. The resu l t s  of this compu- 

tation fo r  RIGHT fixation intervals  a re  presented in Table 6. 6 .  The 

L E F T  fixation intervals  could be modeled in  the same way. 

TABLE 6.6 

Varying T does not affect the resu l t s  significantly. Since 

T =  0 produces a simple model, this value w-as se lected as the 

optimal value. A sca t te r  plot of the model eye fixation lengths, 



164 

This  v e r s u s  the actual  eye fixation lengths is found in Figure  6.27. 

plot shows ra the r  good correlat ion between the model  and the actual  

lengths for  shor t  fixations. When the actual fixation length is g rea te r  

than 800 mil l iseconds the model generated intervals of approximately 

800 milliseconds. Attempts to remedy this situation by including 

squares ,  cubes, and inverse  t e r m s  in the input vector produced no 

significant improvements in the model  responses.  

The sca t t e r  plot shown in Figure  6.27 is clearly based by the 

l a r g e  number of long fixation intervals ,  which the model  is incapable 

of generating. In o r d e r  to determine the effectiveness of the model  

on shor t  fixation intervals ,  a computer run  was made w-hich deleted 

all events with fixation intervals  grea ter  than 800 milliseconds. 

sca t t e r  plot which resul ted is shown in Figure  6. 28. 

The 

The c r i t e r ion  function, the variance of the model  e r r o r ,  w-as 

reduced f r o m  0. 082 to 0.008. 

deviation of 90 milliseconds, 

tion between the model  output and the actual  fixation time. 

This  corresponds to a standard 

The sca t t e r  plot exhibits good c o r r e l a -  

6 .9 .3  Dual PDE-MSDE Model 

A s  soon as an  eye motion interval  is over,  the operator  

begins commutating towards the other  display. Halfway between the 

two displays, o r  possibly before if per iphera l  vision is utilized, 
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both display var iables  and their  r a t e s  are  available to  the operator.  

Based on the available s ignals  the operator  determines  how much 

t ime  to al locate to the new display. 

p roces s  is repeated,  It seems apparent  f rom the resu l t s  descr ibed 

above that the decision concerning the amount of t ime to al locate to  

the new display is made  by at l eas t  two m o c e s s e s .  

p roces s  is used when rapid scanning is required and another decision 

p roces s  is used when m o r e  le isurely  scanning w-ill suffice. 

resul tant  model s t ruc tu re  is shown in F igure  6.29. 

At the end of this  t ime  the 

One decision 

The 

fixat ion 

I 

Figure  6 .29 Dual PDE MSDE Eye Motion Model 

An examination of the tracking r eco rd  led to the hypothesis 

that  ' ' leisurely" tracking occurs  in portions of the phase space  w-here 

the generation of a pulse is unlikely. The r e su l t s  of the previous 

d 
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chapter indicated that  the operator  did not initiate output pulses in  

the second fourth quadrants of the e ,  6 phase plane. Fur the r ,  where  

e, 6,  0 and 0 are all sufficiently small, the operator  does not 

initiate any pulsatile events. With this hypothesis in mind, the 

t racking r e c o r d s  w e r e  examined. 

intervals  occurred  while the t rajectory was inside the second and 

It w-as found that long fixation 

fourth quadrants  i f  t) w a s  large.  

The MSDE used to determine w-hether the long o r  shor t  f ixa-  

tion model  was to be used is shown in Figure  6. 3 0 .  

F o r  fixed values of r and r the values of the inputs, 0 ,  0 ,  1 2’ 

e and 6 determine  the output of the MSDE. 

determine  w-hich model  the fixation interval  is to be generated by. 

The tw-o groups of fixation intervals  a r e  then modeled by a PDE.  

This ,  i n  turn  is used to  

This  procedure  yields two cr i te r ion  functions and two 

e 1  2 scatter plots fo r  each value of r and r selected. An overal l  

c r i te r ion  function may be defined as: 

(6. 12) 
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- 
b = 1 Long Event 
b = 0 Short  Event 
- 

Figure  6. 3 0  MSDE for Dual PDE, MSDE Eye Motion Model 

where  N and N L S a r e  the number of events so r t ed  into the long and 

s h o r t  model  groups, and @ are the c r i t e r ion  functions obtained @L S 

for  T = 0 f o r  the long and shor t  events respect ively using the input 

vector  defined i n  equation 6. 4. 
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TABLE 6.7 

Table 6. 7 s u m m a r i z e s  the results obtained f r o m  a sys temat ic  

study of r and r A s  can be seen  f r o m  the table,  the optimal 
1 2' 

paramete r  values a r e  r = 8 .0  and r = 15.0. Table 6 .8  p resen t s  

the optimum PDE coefficients. 

1 2 

The overa l l  c r i te r ion  function i s  0. 059 w-hich is considerably 

bet ter  than the c r i t e r ion  function of 0. 082 obtained using a single 

PDE. The separat ion of long fixation in tervals  f r o m  shor t  ones is 

a lmost  perfect,  as seen f r o m  the sca t ter  plots shown in Figure  6. 31 

and 6. 32. 

800 mil l iseconds,  of these only 4 w-ere generated by the shor t  

in terval  model. 

There  are 23 r ight  fixation in tervals  lasting longer than 
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TABLE 6.8 

Optimum PDE Coefficients 

Input Components 

6 . 9 . 4  Summary Of Eye Commutation Model 

The sca t te r  plots fo r  the RIGHT fixation intervals  shown 

in  F igure  6 .31  and 6 .32  indicate that the 2-PDE, MSDE model  

, 
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outputs agree  well  w-ith the experimental  data. 

I t  is assumed  that  similar r e su l t s  m a y  be obtained fo r  

L E F T  fixation intervals .  

The selection of theMSDE decison surfaces  was based on 

intuition and an examination of the tracking records .  This is an 

a r b i t r a r y  procedure  and there  m a y  be many surfaces  which will 

yield better  resul ts .  

finding one MSDE. 

c lear ly  a necessa ry  extension of this work. 

The purposes  of this  study a r e  satisfied by 

The study of m o r e  complex decision surfaces  is 

6. 10 The Complete Human Operator Model 

The complete human operator model  is obtained by 

combining the scanning and signal processing element of F igure  6. 9 

with the models identified in sections 6. 7 and 6. 8. 

s t r uc tu r e  is quite similar to the model  developed in the previous 

chapter ,  F igure  5.20. 

The basic 

An MSDE continuously moni tors  the opera to r ' s  input, when 

decision sur faces  are c rossed  a pulse generation sequence is 

initiated. 

A t  the appropr ia te  t imes  tw-o of the four PDE ' s  sample and hold the 

amplitude and w-idth of the event to be generated, or  being generated, 

A delay occurs  during which rapid eye motions may  occur.  
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as some of the sampling operations may actually occur s,,ortly 

af ter  the initiation of the pulse. This  timing sequence is summar ized  

in  F igure  6. 33. 

MSDE Goes True  Pos s ible C ompr omis e 
PDE Sample And Hold 
F o r  All Pulse  Events 

F igure  6. 33-Timing of PDE Control Signals 

F o r  simplicity,  all of the sampling operations could be combined at 

0. 050 seconds p r io r  to the pulse initiation. 

of deciding how- to generate  a portion of the output event before the 

amplitude or  w-idth has been selected. 

insoluble, a model which included this behavior would be unneces- 

This  avoids the problem 

While this problem is not 

s a r i l y  complex. 

aspect  of the computational resul t s .  

It r ema ins  for further  studies to evaluate this  

The complete eye  motion model is shown in Figure  6. 34. 
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A bistable element is used to determine w-hich display is 

being viewed and se lec t s  which input is to be used for timing. 

The timing signal, t, r e s e t s  to z e r o  when the flip-flop changes 

s ta te  and increases  l inearly w-ith time. When the t input is equal to 

the output of the selected PDE the MSDE generates  an output w-hich 

initiates a transition. 

duration, 100 milliseconds. The output of the flip-flop opera tes  

the scanner  and signal  processor  of Figure 6. 9. 

The t ransi t ions are assumed to be of constant 



CHAPTER 7 

CONCLUSIONS A N D  RECOMMENDATIONS FOR FUTURE WORK 

7. I Conclusions 

The main  objective of this d isser ta t ion has  been the develop- 

ment  of a c l a s s  of d i sc re te  elements suitable for configuring models 

fo r  the d i sc re te  control  behavior exhibited by human operators.  

The Multi-State Decision Element (MSDE) and the Proport ional  

Decision Element (PDE) we re  deveaoped to mee t  this objective. 

That  the two e lements  a r e  general  purpose w-as demonstrated by 

synthesizing and identifying two complete models for two different 

types of d i sc re te  control behavior. The model  synthesized in 

Chapter 5 contains probably the f i r s t  completely identified input 

dependent sampling model  for  a human operator performing manual  

control. 

scanning behavior of human operators  performing manual  contr ol 

with two coordinated displays. 

Chapter 6 descr ibes  a determinist ic  model for  the visual 

Both models were  based on resu l t s  f rom a single, well- trained 

operator.  Consequently, it is not possible to in terpre t  part icular  

numerical  resu l t s ;  for  example, the asymmet ry  of side a r m  

178 
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control motions observed in Chapters  5 and 6. The models do 

demonstra te  the versat i l i ty  and adaptability of the PDE and the MSDE 

and their  associated identification algori thms.  

7.2 Recommendations F o r  Fu ture  Work 

The re  are two separa te  areas in w-hich this d isser ta t ion is 

deficient. 

t r o l  actions w-hich a r e  generated as pa r t  of preprogrammed pulse 

sequences. 

elements to the identification of sampled data human operator  models 

when the opera to r ' s  output is not d iscre te .  

The f i r s t  a r e a  is the modeling of pulsatile operator  con- 

The second a r e a  is the application of the d i sc re te  

Substantial evidence was found in Chapters  5 and 6 for the 

Both models were  existence of preprogrammed pulse sequences. 

unable to generate closely spaced pulses and consequently failed to 

desc r ibe  approximately 20'70 of the opera to r ' s  control actions 

accurately.  An asynchronous finte s ta te  machine containing threshold 

elements and memory  elements (flip-flops) was  utilized by Bekey 

and Angel [: 4 1 to study the generation of preprogrammed pulse 

sequences. 

[ 1 fl to generate two pulse sequences for  ce r ta in  controlled elements,  

Pa t t e rn  recognition techniques we re  utilized by Gould 

If the output of the model  synthesized in Chapter 5 was  

assumed to be the fo rce  developed by an opera to r ' s  muscles ,  then 
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a continuous f i l ter  ( represent ing arm dynamics) could be added at 

the output of the model. 

internal  d i sc re te  behavior of human opera tors  in continuous output 

The resu l t  could be used to investigate the 

situations. 

Another a r e a  of extension lies in the development of models 

for  visual scanning behavior in m o r e  complex control tasks.  
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